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P- 5, line 9,

pr. 8, line 15,

p. 11, line 2,
p- 16, line 2,
p- 19, line 7,

p. 0, line 20,

line 22,

L 2]

P. 27, line 9,
line 14,

P- 30, line 16,

p- 33, line 8,

P- 36’ Eq. (9-3-19): Replace

list of Exrcta

Replace "coveriont™ by "covariant."

Replace "... system. This system ..."
by " ... system, which ..."

Replace "gollowing" by "following."
The symbol on this line is "Be . "

Replace "dynamical®™ by “canonicol."

Replace "Let us concider ..." by

"Let us therefore consider..."

Replace "It will be shown ..."

by "The Uncertainty Principle then states..."
Sentence beginning at bottom of page should be
changed to read "It will then be shown to hold also
for the system S and by judicious choice of appara-
tuses 3:1(1 :ouplings, may therefore be extended to
cll physical systems," ™

The tilde "~" should be inserted in Eqs. (9.2.29)
and (9.2.30).

Replace "mathe -" by “"mathe g".

Replace "physics" by "formalism."

Replace "true null eigenvectors" by

"true eigenvectors cogresponding to zero eigenvolues."
Replace "true null eigenvectors" by "truc eigen-

vectors corresponding to zero eigenvalues.”

ﬂbg_tﬂ by llbg ."

p. 40, Eq- (9.3.37), Replace "3,," by BpA."




Pe

DPe

p-

L2, Eq. (9.3.ho),
43, line 15,
L6,

47, 1line 2,.

48, line 1k,

4o, lines 3 and 4,
Eq.(9-3.60),

50, line 5,

52, Eq- (9-4.7),
53, Eq. (9-4.9),

Eq. (9.4.10),

line 8,
55, Eq. (9.4.17),
57,

58, line 8

line 19,
63, line 4,
6!")

Replace " by

L] n "
'5(A,B) 5e(A,B)'
ees the chopter." by "... Part I."

Sentence beginning at bottom of page should be changed

Replace

to reod "In Section T the extension of the method to
ih6 Dully relativistic situation in which the gravite-
tional field itself is given dynomical propert.i_es will
be discussed."
Cmit "only." e L ]

Insert, "d" ofter "l-column array."

Replace ..an.‘v‘ " by "G'I“'v'."

Insert "T" ofter integral sign in first line.
Equation number should read "(9.3..62)."

Replace "m" by "m'l." . |

Replace all "=" signs by "=" signs. All x!s should
be boldface: ':ac/'\' |
Incert " <" sign in front of the lower Poisson bracket
in this equation. ®

Replace "g(t = t*)" by.q "8(t - t.').". .

Replace /J\(J"f by n:'}:ls.

Lines 19 and 20 should run together, with no new para-
groph at b.ot.t.on of puge.

Replace "... dot. (Note ..." by " ... dot (not ..."
Replace final "(" by & comma.

Replace "=8(T - )" by "-8(7 - Tt)."

Eq. (9.4.81) should read
1
"8S = -j:n(-ia) < xpd()'c“tSt) -fmb"r ar,"
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p. 67, line 11, Replace "one" by "once."

p. 68, line 12, Replace "u" by ;'11‘.'"
pP- 0, Insert " =" sign in Eq. (9.5.7)-
p- 71, line 2, Replace "&w" by “aw:“
Eq. (9.5. 16), Replace "=" sign .‘by " =" sign. .
T2, Eqe 9.5¢g3) should read ~ "F = (£, H),"

v

p- 73 Eq. (9.5.26)y BBeee “(® iy Lront of second line of this equatfon and
®rocket @econg ond thixd Aipes together with a lorge

curly @racket. The subseripts "J'" in the fourth

®
& lige shoud be replace& ®y "j*® and the first x 51
*, ° ° ®
4 shoul@ be dotted.
b & L J . .
2 line T, Replafe Oogt - t99® oy “(t@ to) "
[ 2
¥, . ®
s g Pe 75 line 12, Replace "o@tuad" ¥y Sromegptorye®
-..,‘. ° s
{.. line llf-. . Replace 'fx; > 2 .<x9.
® S Pe 18' lac Ll-.. geala‘ "i‘ha" by %’.‘ ‘.
®
. 10 R "e .
. el nolee M° W
s * R R ] S e o2 The sc@pn@ of Eqse $9-%e%9) is miscing o "1" in the
P @ p [ L ]
® ..--" i T n ato?,
s .o " g =
o9 ., . p- SOy line g Insery comma ofte® "in fact.” L
Eq. (9.5.58), Replace " i—- g by " %c— o
o, @ . £ s @
p. 82, line 1, Replace " (9.5.58)" by "(9.5.60)."
™
. p. 83, lines 9 and 10, Replace "strictly local considerations” by "use of
® .
local rest frames."
p. 84, line 1k, Insert comma after "functions."
p. 86, Eq. (9-5-76) should read
S .
n HWT=  -2\2 (¢ LoV o0 oK L K A abed
c (~x<) - EP"P < P 0X 0% b ,cxp,dc
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86, line 11,

88, line 2,

Replace "(9.%2 )" by "(9-4.25)."

Replace. "(9:5.52)“ by "(9.3.52)."

lines 7 ond 8, Replace "... the following section,” by "... Part 1I,"

I-iv,; Third line below Eq. (A.l1l): Replace "EZJVA’

" vy "PiA,‘ QiA."

Q
1A
e A

Fox‘:rth line below Eq.(A.11l): Replace "PiA, A:I.A" by "P:I. y Q:LA'"

I-vi, Eq. (A.18),

I-vii o,

I-viii,

I-ix,

I-x,
89, line 14,
90, line 11,

96, line 1,
line 4,
98, line 1,

Eq. (9-6.u44),

L2

Factors following ”%F" in integrend of second line of
this equation should be enclosed in square brackets.

The quantities " cnd "t 1t J"" in the square

"ll
,&' J
matrix should be interchanged.
The lover right hand element of the matrix in the
third line of Eq. (A.31) should read
"By Qup + P Qg 5 "
.~ A a2 A :
i.e., with a "+" sign instead of a "-" sign. This
equation should be inserted after Eq. (A.30) at the
bottom of p. I-vii.
Eq. (A.34) should be renumbered "(A.33)."™ A square dbrac-
kat okould be inserted at the end of the third line
of this equntionb'
Eqs. (A.35) to (A.38) should be renumberecd from "(A.34)"

to "(A.37) consecutively.

Eq. (A.39) should be renumbered "(A.38)."
Replace "every thing" by "everything."
Replace "qunatities"™ by "quantities."

1re tee
Replace "F€ ' " 1y "Fae gt »
Replace "FmJ.. " by "FwJ.."

Insert "T" after "subseripts.”

|
First term on right should read "¢%7 "
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100, line 10,

102, line 10,

Replace

BReplace

103, Third line from bottom:

106, Second line from bottom:

109, linc 8,

117, Eq. (9.7.18),
line 18,

118, Eq- (9.7.21),
121, Eq‘. (977~l‘1):

. 122, Eq. (9.7.42),

last lint?,
125, Eqs. (9+7.60),
. )
127, line 17,
128, lixm 16,
30 813ne §, )

1338Yine 26, e
N

dast 1gpe, L
' °

135, nc 17,
138, .o

Replace

"considerable® by "considerably."™

"varifies" by "verifies."

Replace "Eq." by "Egs."
Replace "conditiona" by "conditions."

"I£" by "It."

First term on right of Eq. (9.7-4) should read

Terms following the " -

lines of

brackets.

"R ' 8z
apy8-e |
" in the second and third

o=

this equation should be enclosed in square

lasert “for" after "pi."

Indices on "R" sho&d begin lower position.

= nww T
Insert "i® after % ‘

"D" should be dotted. ®

Replx;ce i) - ,(\EZ ko)" by "(k"‘- (ko,AB.'

Bracket these equations to%ether with a large curly

bracket. ®

Replagce "x%eaxis" by "xl-a.xis.“ @

Replace "elastic moduli b d" by "internol stresses.™
Replace "nust® by "must." L

Replace "empmphosized™ by “emphasizdi.™

Repl.ace *"measure® by "measured."

Replace ®"magnitued™ by "magnitude."

Sentence

“read "At

beginning on line 17 should be changed to
the beginning of the interval T, 1nstea.d of

'ad.justing the internal stresses so as to :Lu..»urc

stroin rigidity we "simply. let the elastic moduli all

fall abruptly to zero."
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143,

146, line 1l

149, line 2,

150, Egs. (9..8.61+) ,

152, line 15,

164, line 10,

169, 1ine 8,

171, line 12,

Eq. (9.8.44) should read

" -1 " . "

oz, = mo(p," - Py,t) At

Replace "im" by "in."

Reploce "strain tensor" by "strecs-energy density.”
”n 1II n "

Replace A‘If(o) by AT(O)1 .

Replace "displacement” ty displacements.”

. There is no page numbered 163..

Insert “of" after "(D.15)."
. & .
Replace "region, will in virtue ..." by "region will,

in virtue ..." hd

Reploce "is a theory" by "is basicolly a theory." °

173, Second line from bottom: Replo.ce.'.'.... opproach, For, 91.1-..."

II-11, Eq.

II-iv, Eq.
II-vi, Eq.

Eq.

(B..lo),

(B.23),
®s.33), *

(B'Bl"),

p. II-vii, Eqo (B.35),

Last 1line,

p. II-ix, Eqs. (C.13),

by "... approoch, for oa ..."
Last term should read “naw''v'8J."
The symbols "d" hove been omitted from the. Jocobian
in the bottom element of the column matrix. ®
Lost term of second line of this equation should
read "Gt75€, ¢ ®
Quantities " F_.o " ond "FP . " in the first
colurm of first matrix should be replaced by
"Fa7, " ana "FP ”t " recpectively. First matrix
should be preceded by a square bracket.
First foctor on right should be "y*" instead of "o
Replace "p" by "ooo"

Replace final factor "(T - 7)" by "(7 - t*)."




p. II-xii, Eq. (D.5),

"21 J“ should be dotted.

p. II-xiii, Eq. (D-8), Replace "5(5“5.7)/51" in thé fourth line of this

®

p. 180, line 1,

" H "
equation by "3, . (8 5.7)/{}: . si@ify‘.}n'g the co-
variant proper time derivative of 8"6.
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CHAPTER 9

THE QUANTIZATION OF GEOMETRY

Bryce S. DeWitt

(9.1) Introduction.

'I‘he development of ﬁmda.mental concepts in theoretical physics |
since l900 has been very much a story of the epistemological analysis of
space and time on the one hand and, within the framework of quentum
mathematics, of the notions of observation, measurement, and indetermin-

.
<sm on the other. These two acpects of physicgl theory have always re-
mained sharply distinguished, in spite of the profound influer’:e that
each has exerted on the other and the deep connection which undgubtedly
®..ists between them. This chapter is an attempt to indicate the nature
of and ideas involved in the problem of removing tuis division in physics
.in a manner which goes beyond the already familiar superposition of the
ideas of special relativity upon a quantum framework.

In a restricted technical sense the problem under considergticn
is referred to ad®"the quantization of the gravitational field." It
should be stated at the outset that there is no experimental motivf.tion
for the inveotigation of this prol:lem whatsoever. The inescapable lessons
which Nature has been teaching in the laboratory during the past sixty
yea.r.,, concerning her f‘undamental symetries and the group theoretical .
propcrtieg of ‘the ma.thema.tical formlei.,ms which describe her, have fallen
short. of providing a complete synthesis of the observational viewpoint in

physics. The motivation for "quuntizing the gravitational field" therefcre




consists solely in the fact that the program is utterly loglcal. It
demanas no new hy'potheSes.‘. It résts cc.umbletély on the general theory of
relaetivity and on conventignal q,ua.ntum theory, of which the latter has
beenoestablished as correct beyond a.ll doubt while the former, although
lacking as firm an expe*imenta.l foundatlon, has, because of its beauty
and powerful viewpoint, deeply influenced better established ma.reas of

physics. ®
One should, of course, not fall to mention certaln speculations
which have been made from time to time (Pauli, 1956; Klein, 1955, 1957;
Landau, 1955; Deser, 1957) concerning the possibility thg.t a quantum-
.fluctuating graaritational field may remove the divergences in conventional
relativistic quantum field theories, by providing a natural "cut-off."
We shall have occasion later to discuss such a natural limit. However,
there exists as yet absolutely no concrete mathematical evidence either
to support or.to .deny these speculatlons. A l-ng program of formalism
building end calculation is an unavoidable prerequisite. We shall there-
fore dismiss this problem from discussign and turn to the fundamental
considerations which will detern;ine the character of the formalism itself.
The problem of constructing a formalism for quantum gravidynamics
has been under gtudy for at .least; the past dozen years and has proved to
be & particularly vexing one. No attempt will be made here to give an
pistorical survey of the work that has been done, although lessons learned
from it wi]:l co;zstitute an important factor in controlling our method of
.procedure. The bibliography at the end of the chapter contains a fairly

complete list of references to work appearing after 1955. For references

to earlier work the reader should consult the article by Bergmamn 1n the




proceedings of "The Jubilee of Relativity Theory" (Bergmenn, 1956).

The problem may be approached from either of two viewpoints, loosely
described as the "flat space-time approach" and "the geometrical approach”. In
the flat space-time approach, which has been investigated by several authors
(Feynman, 1957; Thirring, 1959; Gupta,1952, 1957; Belinfante, 1957; Birkhoff,
194k; Moshinsky, 1950; Rosenfeld, 1930) the gravitational field is regarded
as just one of several known physical fields, describable within the Lorentz-
jnvariant framework of a flat space~-time. Its couplings with the other fields
are largely determined by experiment together with considerations of simplicity
involving the mathematics of spin-2 fields. These couplings lead to & contrac-
tion or elongation of “"rigid" rods and a retardation or advancement of "standard"
clocks, which are independent of the individual characteristics of these lustru-
ments, in the proximity of gravitating matter as well as in regions containing
strong gravitational radiation,

In the geometrical approach to quantization, on the other hand (which owes
so much to the work of Bergmann---see bibliog:raphy), the theory of gravitation
is regarded in classical Einsteinian terms as & theory of the geometry of
space-time, in which rigid rods and standard clocks are themselves regarded
as providing the local definition of invariant intervals. Both the geometri-
cal and flat space-time points of vievw have the sane real physical content.,
However, it has been argued that the flat space-time approach provides more
jmmediate access to the concepts of conventional quantum field theory and
allows the techniques of the latter theory to be directly applied to gravita-.
tion. While there is merit in this argument, too strong an insistence upon
it would constitute a failure to have learnmed the lessons which special
relativity has itself already taught. Just as it is now universally recog-

pized as inconvenient (although Essible) to derive the Lorentz-Fitzgerald



contraction from relativistic modifications in the force laws between atomws,

so it will almost certainly prove inconvenient at some stage to approach
space-time geometry, even in the quantum domain, in terms of fluctuations
in standard intervals which are the same for all physical devices and hence
unobservable, In both cases it is the existence of an underlying invariance
group which really controls the interpret;a.tion of the for@lism. In this chap-
ter the geometrical a.pproa.ch will be firmly adhered to and the inv&riance group ’
will be placed as much as possible in the foreground K .
Unfortunately it is precisely the existence of the coordinate invaeriance

group of general relativity which is responsible for most of the difficulties

:vhich have been encountered in attempts to quantize geometry. It may be shown

by quit:a general arguments (Utiyama,1959) that the exlistence of such a group

alvays gives rise to constraints which must be satisfied by the "initial data"”

° ee charaagerizing indieidual solutions of the dynamical equations. Although »

grea.'t‘ concentration of effort has been brought to bear on the problem of cone
. straints, no one has yet found a way to formalize the problem without introducing
the canonical mnda.menta.ls.of a Ha.miltonisn or quasi-HAmiltonian theory (Dirac,
1958, 1959, Arnowitt Deser and Misper, 1959, 1960; Anderson, 1958, 1959; Berg=
mann, 1956,1958). The cannnical approach, however, treats space and time asym-
metrically and does not fit comfortably with the invariance group. In certain ™
respects it* represents a retreat back to the flat space-time viewpoint--- par-
ticularly when a.symptotically Minxsowskian coordinate conditions at infinity are
imposed. Mgreover, the overriding need to discover a “re:med Hamiltonian",
which the constra.int problem imposes, has sometimes led to the extravagant .
claim that the canonical formallsm is essential to the quantization progra.m. )

The ca.nonical viewpoint represents an endeavor to maintain close contact with .

familiar parts of qnantm theory by casting quantum gravidynamics into

N
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conventisnal language. However, the resulting formalism becomes quite com-
plicated already at an elementsry level, Furthermore, it is found to be
rather removed from immediate and locel invariant physical conceptss The
possibility must therefore be considered that the conventional lang!.xage either
a.sl.:s fﬁe wrong questions or else boses them 1ncerrectly.

' At this point opinion divides. Some workers feel that however dzrbitrary

' the d.istinction betWeen spa.@e a.nd time ma.y be - the conventional language 15

both necessary a.nd a.ppropria.te. Others, including the present author, feel
that a language which is manifestly coveriant at every stage is not only desir-
able but attainable. In the following sections a possible way to develop such
a la.ngua.ggy will be indicated. In this development Hamiltonian ideas are dis-
pensed with entirely and space-time is treated in a completely homogeneous
'ashion.

A basic tool in what follows is a definition of the classical Poisson brac-
ket by means of Green®s functions, which is independent of any definitiors of
pairs of conjugate varia.’ble.s and which is, in effect, a straightforward exten-
sion of a definition originally proposed by Peierls (1952). The point of view
will be adopted that Poisson brackets (1.e., commutators) should be defined only
between invariants, i.e., quantities vhich are invariant not only undex the
group of coordinate transformations but also under any other infinite dimen-
sional transformation groups possessed by the dynamical systems under consider-
a.tion. This automatically elimina.tes the peed for subsidiary conditions, which
have always to be specia.lly tailored to each individual system and which have

proved so often bothersome' Ln the past. . Furthermore, this a.pproach ‘is in

accord with the foundations of the quantum theory as expressed in tHe genera.i

theory of mea.surement. Real physical measurements can be performed only on

group invariant quantities, and the interference between two measurements
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which, via the Uncertainty Principle, defines the commutator, is most immed-
jately described not in terms of ;:az-xon:'lcally conjugated variables at a given
instant, -‘b\;t in térﬁs. of, tk;e .Gx:’een's-ﬁm'ctions vhich express the laws of
propagation of qgailﬂdisturpagceéiéhg,ﬁpicg’s;tisfy certain fundamental recip-
rocal relations. o '

In quantum electrodynamics this role of the Green's functions was demon-
strated at a very early date in the clas;sic paper of Bohr and Rosenfeld (1953) 5
which made no use of subsidiary conditions, and to which the author of the
present chepter is heavily indebted as will be immediately apparent in the
sections to ?t‘ollow. This indebtedness may seem in one respect surprising, not,
to be sure, kecause of any present-day diminution in the importance of this
clagsic work, but because its coaent, as Bohr and Rosenfeld have themselves
repeatedly indicated, was guided in every way by the existence of an alreedy

developed formalism, whereas here we are trying to "put the cart before the

ahorse"---to develop the formalism itself with the aid of the ideas of the
. .

theory of measurability. The reason for this, however, lies in the very
nature of the general theory of relativity and of its extremely close kinship
in point of view with the conceptual foundations of the quantum theory.2
Furthermore, having the work of Bohr and Rosenfeld already before us is some-
thing quite different from doing the same. thing, in ignorance of it, for
another, more complicated, system.

licw, there are certain immediate obstacles to carrying out a program along
the above lines. The first consists in the fact that in the theory of the
pure gravitational field the invariants which come easily to mind (e.g.,

space-time integrals of scalar densities formed out of the metric and its

derivatives) have not so far proved to be useful objects with which to test

| om— (e _ prmm—




the theory through"Gedankenmessungen.” No one has yet found a way of using
these objects to obtain detailed information on the internal dynsmics of
the field. At the present stage of the theory what appears to be needed, if

one insists on meinteining manifest covariance, is a means of constructing

local inveriants. A possible procedure is to introduce four indeperdent
scalars CA , A=0,1,2,3, formed out of the metric tensor and its deriva-

tives and then to use these to deline an intrinsic coordinate system. To use

such a coordinate system for the purpose of comnstructing local invariants one
picks a set of four numbers 'qA and looks at the coordinate mesh defined by
the §A at the point where ;A = 'qA (which will be unique if one is lucky).
Any local geometrical quantity referred to the local mesh at this point will

then provide a set of one or more local invariants. A sample set 1s

B :
TAB(n) = f% gx% %ﬁ-}%— Tuv(x) 8(n - {(x)) a%x , (9.1.1)

where Tuv is any mized tensor formed out of the metric and its derivativese.
The &¢B/dxV are the gradients of the CA , 8nd  d(¢)/(x) end o/ dth are
respectively the determinant and the components of the inverse of the matrix
formed from these gradients. The TAB are the components of the Tuv in
the intrinsic system, taken at the point where the scalars §A have the
values nA respectively. More complicated geometrical objects may be handled
in a similar fashlon.

Invariants constructed in this manner have been studied by Komar (1958).
(See also Bergmann and Komar, 1960). As scalars he has used the four
"eigenvalues" of the Riemann tensor (see Géhéniau and Debever, 1956; Pirani,
1957). The use of these scalars, however, and indeed of almost any conceivalle

scalars built out of the metric tensor and its derivatives, has a serious
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defect. Such sealars are functionally independent only in regions of space-
time possessing a degree of inhomogeneity and asymmetry sufficient to rule
out the spplicability there of any of the known exact solutions of Einstein's
equations as well as any more general solution satisfying “pure radiation”
conditions. The situation is precisely analogous to one which occurs in
hydrodynemicel theory (see Courant and Friedrichs, 19&8) in ;Jnich in the

case of one dimensional isentropic flow, for example, certain functions of

the density and velocity, known as Riemann invariants, can be used to define
n "intrinsic" coordinate system, the mesh of which is formed by the "char-
acteristic lines." The intrinsic system can be used to identify space-time
points, however, only in complicated flow situations involving interacting
waves; it becomes degenerate in precisely the cases of constant flow and
so-calle "simple waves."

In order to avoid difficulties of this kind we shall introduce directly
jnto the discussion an additional physical system. This system will serve
to furnish us with a reascunably fool-proof set of intrinsic coordinates
while at the same time forming a cambined physical system with the gravita-
tional field. In principle, any additional system which provides a "useful”
set of four scalars will do. Actually, we shall ckwose the most intuitively
obvious system possible, namely, & stiff elastic medium carrying a framevork
of clocks. Sections 5 and 6 are devoted to the description of this system,
which proves to Ye readily amenable to covariant mathematical analysis.
Naturall.y the physical constitution of the medium as well as of the clocks.is

not dealt with on an atomic level but only phenomenologicalily. The limita~

®
tions which this imposes on the conclusions of the present chs.pter will be

discussed later o
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It might be supposed that the elastic medium with its clocks has merely

a technical utility, constituting en otherwise foreign element in the dis-
cussion. Such is by no means the case. 'I'he role played by the medium in

prorvid.ing a physical coordinate system proves to 'be a fundamental one, as

"the measurement theoretical analysis will reveal with particular clarity,

’ and servee to bring the conceptual fmmdations of both the general theory

of relativity a.nd the quantum theory into sharp focus. A clock carrying
medium of some kind is needed it only in limited regions of interest, in
order to give an cperational meaning to the concept of “space-time geometry"
in the first place. One mey, to be sure, hope that the introduction of a
purely phenomenological medium is only an interim measure, which will be
superseded eventually by a comprehensive unified theory of elementary part-
icles gnd fields; containing its own theory of measurement as well as its own
interpretation. It has, in fact, been suggested that such a comprehensive ’
theory might already be achievable wvithin the framework of geometry alone
(Misner and Wheeler, 1957). Suffice it to say, bowever, that present formu-
lations oOf gravitation theory are very poorly suited indeed to the task of
ylelding such an ocutcome.

In the following section (Qa) the possibility of bypassing the canonical
language is proved through a demonstration of the role of the Uncertainty
Principle and the ‘tﬁeory of.neaeureinent in the definition of the Poisson
bracket for an arbitrary system. It is shown in & quite general manner that
the qua.ntization of a given system implies also the quantization of- any other

system to vhich it can be coupled. By & principle of induction, therefore,

_the quantum theory must immediately be extended to all physical systems,

including the gravitational field. Moreover, the pricise form of the




commutator between any two observables is uniquely specified. The properties

of the C;reen's functions which enter naturelly into this specification,
through their ability to describe the propagation of small disturbances,

are studieq in Section 3. The existence of infinite dimensiona2l invariance
groupa. 1:5 easily takxsn into ac.count, and the consistency of the Poisson
bracket definition is established. Althougb not essential to the quantization
program, nor eyen to the specification of quantum states, the generator of
infinitesimal space-time displacements is derived as an 1llustration of the
general methods. In Section 4 these methods are applied to the free particle,
as a familiar example, and to the relativistic clock, which is a basic tool in
the theory of the measurement of space-time geometry, as has been emphasized
by Wigner (1957) (see also Salecker, 1957, and Mgller, 1955) and as will be
evident in the present work. After further application of these methods to
the elastic medium in Section 5, and to its interaction with the gravitational
field and clock framework in Section 6, the gravitational field itself is
studied in some detail in Section 7. The problem of finding the generator of
infinitesimal displacements with respect to the intrinsic coordinate system
provided by the elastic medium together with its clock framework is posed

in terms of variations in the action functional, and the difficulties

involved in solving the problem are explicitly shown. The significance and
range of validity of the "weak-field" approximation is examined and the
importance of the Riemann tersor as an approximate invariant is emphasized.
Graviton spin and polarization states are defined in terms of the Fouriex
decomposition of the linearized Riemann tensor, and the commtators of

the weak-field theory are given. Section 8 is devoted to a study of

10




the question of the actual measurability of the gravitational field in the
quantum domain, gollowing closely the arguments of Bohr and Rosenfeld for
the electromagnetic field. The measurebility is verified to lowest order of
perturbation theory, and the statistical predictions of the weak-field theory
are confirmed, provided conceptual test bodies of "Bohrian" delicacy are
permitted. The analysis, however, must be extended to include an exami-
nation of the stresses in the test bodies, as well as in the various
compensation mechanisms and momentum-measuring projectiles (photons)

vwhich are used, problems which Bohr and Rosenfeld could ignore. In this
extension the fundamental length of gquantum gravidynamics (see below)

makes a repeated appearance as 8 lower bound on the size of allowable
measurement domains, from which it is necessary to draw the conclusion

that the very concept of "ficld strength" can have no objective classical
meaning for domains smaller than this, even if any meaning is in fact

left to it at such a microscopic level after the limitations imposed by

the observed scheme of knnwn elementary particles are taken into considerw-.
ation. Finally, in Section g, the author expresses his views on the
outlook for the future of the quantum theory of geometry.

The whole chapter is divided into two parts, each having technical
appendices at the end. Units are employed for which # =c = 161G =1,
where G is the gravitation constant. All quantities are thereby reduced
to dimensionless numbers. In thesc units the masses of the familiar
elementary particles lie in the numerical range 10722 ¢o ].0'l8 vhile
the units of length and time are egual to 1.l x 10732 cm. and
3.82 x 10"'*3 sec. respectively. Attention should be celled to the

following points of notation: The signature of space-time will be taken




ag - +++. The Riemann and Ricci tensors will be taken in the forms

T T T P T [} T
Rw = Tovou~Tou,v*TovTow - Tow Tov 2 (9-1-2)
o = b .
RBiv = Ry 0 . R R (.9'1'3).

. where Puvc is the affinity and the comma’ denotes the ordinary derivative,

-The “covariant derivative will be indicated by a dot.

fe
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(9.2) The role of the Uncertainty Principle and the theory of measurement

in the definition of the Poisson bracket.

We begin by considering a general physical system describable i:y
a _set ‘of loc;a.lized real dynamical variables ¢i' . These variables will
be functions of one or more continuous parameters, or "coordim tes." For
definiteness we may regard them as functions of four space-time coordi-
nates xu . Everything we say, however, will be equally applicable to
systems with either more or fewer parameters, in particular to systems
having only a finite number of degrees of freedom, with "time" as the
single peorameter. Different points of space-time will be distinguished

Yy meons of primes: X, x', x", etc. For compactness -the point at which

a given variable, such as 4>i s is evaluated will be indicated by affixing

"
primes to the index appearing on the variable: e«g., @i . For economy

in the use of primes the symbol z will also sometimes be used in place
(]

of x to designate a point in space-time. Lower case Latin indices from
the beginning of the alghabet (a, b, ¢ ves) will always be associated
“rith the symbol z , while those from the middle of the alphabet (i, 3, vee)
will be associated with the @ymbol X .

The dynamical properties of the system will be specii.‘icd by an

action functional S . For our purposes this functional may be regarded

as a purely formal expression, to be used to fix the form of the dynami-
cal equations and to determine their transformation properties. For
systems with "localized action™ 5 aoppears as an integral, over all

space-tinme, of any one¢ of & mmber of equivalent functions of the oi

13




(and their derivatives up to same finite order) which differ from one
another by total divergences. Questions of the convergence or divergence
of this integral are __1rreleva.nt3 (although they are not irrelcvant for
its \.ra.'rio.tions) and the dynamical equations themselves may without am-

biguity be written in the form

s,i = O ’ (9-2-1)

where the corma followed by an index is here used to denote the veriational

or functional derivative with respect to oi at a point. Furthermore,

it docs not generally matter how many variables oi are used to describe
the system, as long as all descriptions are equivalent. Some of the oi

may, through the dynamicel equations, be expressible in terms of deriva-

tives of others, for example.

Even vhen the minimum possible number of variables is chosen in
the action functional, it does not necessarily follow that any one of
then is physically measurable when taken by itself. It will oftcn happen
that a continuous range of values for the oi corresponds to one and
the same physical situation and hence thet these values cannot be physi-
cally distinguishcd. Chenges from one set of values to anothcr in the
given renge are brought about by a set of transformations forming an in-
variance group for the system, which expresses certain symmetry properties
possessed by the system. In the cese of infinite dimensicnal invariance
groups, which will be our main concera here, sn infinitesimal transfor-
mation belonging to the group produces a variation in the oi heving the

L

general fornm

ot =fRiL. sgL d!*x' » (9.2.2)
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vhere the 6(1‘ are arbitrary infinitesimal functions known as group

parameters. Here, capital latin indices from the middle of the alphadbet

(L, M, Ne..) will be associated with the symbol x , vhile those from the

beginning of the alphabet (A, B, Cees) Will be associated with the symbol z.
The representation of the group which the variables 01 provide, through

Eq. (9.2.2), need not be linear but may be guite general. The only restric-

tion on it is the identity

T " ’
j(RibJ,RJ B © RiB,,J,Rd'A)dux' = jRiL,cL AB'dux’ " (9.2.3)

where the c:I‘A gt ore the structure constants of the group, which in turn

satisfy the identity

' M

L L L
.[ (°LAM'°M sec" * °LB|m°M cat Ccme ¢ ape jakxr = o . (9-2.4)

Typically RiL, will be a "differential operator” --- that is, a linear combi-

pation of the delta function and its derivatives with coefficiefits involving
the 01 and their derivatives up to some finite order.

The invariance of the physical situation under the transformation (9.2, 2)
is assured if the action functional remains invariant under it. A group in-

variant I 18 evidently characterized by the condition

j I,iRiA dux = (0] Iy (9.2-5)

The action S , in particular, must satisfy this condition independently of
the dynamical equat.i.ona.5 This means that the dynamical equations themselves
are not all independent of ¢re another. As has been mentioned in the Intro-
duction such a situation is always associated, in the canonical formalism,

with the problem of constraints. It should be pointed out, however, that a

functional relationship between the dynamical equations exists only in the

15




case of infinite dimensional groups. .In the case of finite dimensional

groups the integral is eliminated from Eq. (9.2.2), and the 34> cennot
generally be made to vanish in remote regions. Therefore the integration
by parts which always enters in the derivation o.f Eq. (9.2.5) cannot be
performed, and & totel divergence must be added to the integrand of this
equation. Instead of encountering a constraint protlem, one 1is thereby
led to a conservation law which holds when the dynemical equations are
satisfied (Noether, 1918). Beyond this the effect of finite dimensional
inveariance groups i limited to insuring covariance of the dynamical
equations, that is, their invariance in form under the transformations of
the group.

By teking the variational derivative of Eq. (9.2.5), with I
replaced by S, it is easy to show that under the group transformation
(9-2.2) the dynamical equations (9-2-1) are replaced W linear combinations

of themselves. We have

?
.ofdx' sziJ,RJAﬁgA
L 3 A
[d x* [d72 8, ’3t R 4 86 - (9.2.6)
[ [ ]

Since this relation must hold Independently of the particular solution of
the dynemical equations which :s involved, the change (9.2.2) in the
dymemical variables is physically unobservable, at least within the frame-
work of the system S itself. The change can become observable only as

a result of coup:.ing with en additional "external" system which destroys
the invariance property in question. If the additional system maintains the

invariance property, on the other hand, the change will remain unobserva.'ble.

————  p— - p——
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- It is precisely thrb’ugh & study of coupling with additional
systems that one is led to & definition of the Poisson bracket which is
valid under the most gener'a.i éii‘cuxﬁétéhces. The introduction of an addi-
tionai aystéﬁ' is, of course,' expressed by :a. change iq the ;act'ion functional.

We shall begin by considering ‘the simplest possible change:

S -» S+ e 5 (9.2.7)

where A 1is an invariant of the original system and where the effect of
the original system on the added system is neglected, the pertinent
dynamical quantities of the latter being lumped into the "constant" €,
which will be regarded as small. The change (9.2..7) will induce a change
in the dyna:mica.l variables oi » the precise nature of which depends on
the boundary conditions selected. For exa.mple,. we may adopt advanced
boundary conditions in which the dynmamical states6~ of the system before
and after the change are taken to coincide in the remote future, or re-
tarded ‘boundary conditions in which the dynapical states are taken to
coincic}e in the remote past, or a set of boundary conditions intermediate
tetween these two. It-is ’to be noted that the co;uceptls of "past" and
"puture" require a hyperbolic character for the dynamical equations, but
nothing uore. Ev:zn if the "metric" which determines this hyperbolic
character is itself a dynamical variable these concepts retain their
validity.

The changes in the <>i corresponding to advanced and retarded

+ 1

boundury conditions will be denoted by SA ¢ and SA'oi respectively.

The subscript A will sometimes be omitted where no ambiguity can arise,

but for the present we keep it. The changes SAtoi are, ot course, not

uniquely determined if the system possesses an invariance group, but are

17
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defined only modulo an unobservable transformotion (9.2.2). The changes

+
5A°B

fB:i &A* ot at + o(€?) , (9.2.8)

in any group invariant B , however, are well defined in virtue of the
invariance condition (9.2.5). It will be convenient to introduce the

quantity

o, B 3 (9.2.9)

DB = "

lim 1 . -
A €0 €

The choice of the retarded boundary condition here, rather than the
advanced, anticipates the "one way" character of the measurement process
in the description of which this quantity will presently be used.

In the 1limit of very small € the b Aiol satisfy the equation

LI
fs’i'j, 5" o) At = -, (9+2.10)

in which the quantities S;ij' and A;i are evaluated using the original
values of the dynamical variables. With the "inhomogeneous term" on the
right hand side amitted, (9.2.10) becomes the equation which describes
the propagation of small disturbances in the system. From its linearity,
which permits the appligation of the superposition principle, the follow-

ing identities, involving group invariants A, B, C, may be readily

inferred:
D(B+C) = D, B+D, C " (9.2.11)
D(A+B) C = D, C+DyC R (9.2.12)
Djg C = BD C+AD,C . (9.2.13)

18




Furthermore, if c¢ is a numerical coefficient or a variable referring

to another system not dynamically coupled to S , then

DB = DB (9-2.14)

The Poisson bracket of two invarients A and B will, for all

physical systems, be defined by
(A, B) = D, B-DgA . (9.2:15)

In the case of systcms possessing no dynanical constraints this definition
has been shown by Peierls (1952) to reduce to the conventional one. The
extension of the definition to the génera.l case will here be made by
appealing to the theory of measurement. It will be noted immediately

that the usual identities

(A, B) = = (B, A) 5 (9.2.16)
(A, B+C) = (A, B) + (A, c) , (9.2.17)
(A, B¢) = (4, B)C + B(a, C) (R 2.18)

are satisfied. The verification of the Poisson-Jacobi id.ent,ity., however,
requires an examination of the laws of propagation of disturbances, and

will be postponed to the next scction.

The system S 1is formaelly gquantized by relating the cermulator

to the Poisson bracket in the familiar manner 5
(A, B] = i(a, B) , (9-2.19)
which lcads immediately to the Uncertainty Principle

0A 0B ~ |<(A, B)>| ) (9.2.20)
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where AA and AB are, for example, the root mean square deviations

of A and B respectively from their average values <A> ard <B> in
the quantum state in question, and vhere "~ " means "no smaller in
order of magnitude then." We shall devote the remainder of this section
to showing that if the Uncertainty Principle holds for one system in the
form (9.2.20), with the Poisson bracket given by (9.2.15), then it .mt.{st
.hold. in th.aLt foim for all sy.stems. if a Q.escription.of Nature' is demand-
ed which avoids the use of ."hidden w}arie.'bles," therefore, the commutator
must in all Gages BE given by Eqs. (9.2.19) and (9.2.15).

The Uncertainty Principle is a statement about the fundamental
limitations imposed by the quantum theory on the relation between measurc-
ments and the possibilities of making predictions expressed :.n classical
language. Suppose the observable A has been measured with an accuracy
AA ; what does this imply in the way c..f restrictions on the accuracy of

predictions concerning the outcome of subsequent measurcments? Before

giving a complete answer to this question let us first take note of the ® e
fact that the mcasurement of a given observable will, dn general, occupy

a finite interval of time, which may itself be involved in the definition
of the observable, although in many simple cases this interval mz;y be
effectively r.egardea as vanishingly small. Let us consider the case in
which the interval associated with the observable B 1is subsequent to
that associated with A . It will be shown that as a result of the un-
controllable disturbance in the system produced by the measurement of .
A, the use of a classical value for B in meking predictions about the

outcome of subsequent measurements of quantities which depend on B is

limitcd to the extent of an uncertainty' AB which is given by Eq. (9.2.20).
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The "classical value" to be uscd for B in this case is its average

value <B> in the quantum statc resulting from (or "nrepared" by) the
measurcment of A . For simplicity in the subsequent discussion,
however, the brackets <> will be omitted whenever it is clear from
the context that the "clt;.ssica.l value" is meant.

The relation between A and B 1is a completely reciprocal one,
and because of -the time reversibllity of quéntum mechanics the above
situation may equally well be described in terms of a limitation AA On

retrodictions conditioned by a meesurement of B with accuracy AB in

the future. This reciprocity is reve8led with particular keenness in
the casc in which the time intervals associated with A and, B overlap.
The simp.licity of the Previous .description, in which the measurcments

of A and B could ‘be.ordered in temporal sequence, is missing in this
case, a..nd the state of the system must here be regarded as conditioned
simultaneo.usly by the results of both measurements, together with their
mutual interference. It is the remarkable property of the qdantum theory
that its formalism consistently mirrors these various cases in such a
simple ond beautiful way. Furthermore, the generality of this correspon-
dence betWeen formalism and Nature is in complete harmony with the

principle of rclativity.

Measurcments are performed on & system S through coupling with
a sccond systenm Sa. s usually called thc apparatus. In principle, any
group invariant can be measured through suitable choice of apparatus and
coupling. We shall assume that the Uncertainty Principle (9.2.20) holds

for the apparatus. It will then follow that it holds also for the

system S and, by judicious choice' of apperatuses and couplings (those,




in fact, by which all physical discoveries have to date been madc), may
therefore be extended to all (known) physicael systens.

We shall begin by considcering the measurcment of a singlc obscrvable
A . The coupling which is suitable for this measurement is onc which
brings about a change in the action functional for the combinecd system of

the form

s+s, - S+ gxXA + Sy . (9.2.21)

Here g is an adjustablc “ooupling constant" and x 1is some “convenient®
apparatus variable. For example, in the Stern-Gerlach experiment, where
A is an atomic spin, x may be token as a finite time integral of the
z-component of the position of the atom in a megnctic ficld which is in-
homogeneous in the z-direction, the strength of the ficld and thc magni-
tude of the atomic magnetic moment being described by g . Likewisc, in
s ficld mecasurement, where A 1s an average of the field over somC spacc-
time domain, x may be & similar time integral of the position of the
center of an appropriate test body, the "charge" on the test body being
contained in g . Thc only abstract differcncc between these two cxamples
is the fact that the eigenvalues of the obscrvable in question come in
one case from a discrete sct and in the other case from & continuum.
Since we arc, in this chapter, mainly intercsted in the latter case wC
confinc our attention to it.

The mecasurement of A 1is carricd out by determining the deviation
in the value of some other suitable apparatus variable =« , as & result
of the coupling, from the value it would have had in thc abscnce of the

coupling. The suitability of the variable =« is conditioned by the
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requirements

D x =0 R (x, 1) = D = $ 0 . (9.2.22)

Thot is, n describes & dynamical state of affairs subsequent to the
eoupling process, s0 that although x has a retarded effect on n, =x
has no rctarded effeet on x . For example, in the Stern-Gerlach experi-
ment 1w might be the position of the point at which the atom strikes

a photographic plate after having passed through the magnetic field,
while in a ficld measurement s may be the momentunn of the test body

at thc end of the time interval involved in the coupling term gxA , &s
observed Xié the Doppler shift of photons, for example. Of course, it

is in thc analysis of the final observation, performed upon the apparatus
variable n , that the source of many of the polemies concerning the
conceptusl foundations of the quantum theory lies. But the resolution

of the difficulfics inherent in this analysis, :heth;r in tcrms of a
discontin&gus "eollapsible" behavior of wave functions, as dé%anded by
the Copenhagen sehool (see Heiscnberg, 1955), or by insistence cn an
isomorphism Yetwecn the real wérld and cn infinitely “branehigg" univer-
sal wave funetion (see BEverctt, 1957, and Whecler, 1957), or with the aid
of ﬁpmc other viewpoint, is laré;ly’a metaphysical problemn, irrelevant

to the prescnt diseussion. 3 *

The analysis of the measurcment of A iteelf reduces to simplest
form when the eoupling term gxA ean be regarded as smcll in comparison
with that rortion of the apparatus aetion sa whieh eorresponds to the

7

time interval involved in gxA . By checosing a suffieiently macroseopie

(i.e., Wolassical®™) apperatus this ean always be arranged. The ehange

a3




in the apparatus variable = as & rcsult of the coupling may then be

approximatcd by

8 n = EAD_n ’ (9.2.23)

where the factor Dxu may be ev?luatcd gs if the epparatus wcre uncoppled
to the system S . Actually, Eq. (9.2.23) is not yct sufficiently
accurate for our purposes. Fcr, in order to analyze the measurcnent
process in thc truly quantum domain it is necessary to take into account
small deviations in A from the "classical velue" which appcars in
(9.2.23), in particular, the deviation which is duc to thec measurement

proccss itself. The latter is given to lowest order by
L]

5 A = exD, A, (9.2.24)
[ J % .

and this is thep to be inserted into the improved formula
.

. S n = g(A + 6- A)DX b1 ’ (902-25)

which gives,the deviatigu in 1 now corrcct to sccond order. Herc again,
[ ]
[

the factor DAA is to be evaluated in the ebsence of coupling.

Solving Eq. (9.2.25) we obtain the *formula

j\_=_6_.lt_.__sxDA

A 2
g Dxu

(9.2.26)

which cxpresscs A in terms of the "experimental data," ond from which

..

it follows that the accuracy in the measurcment. of - A will be given by

oa s gD Alax (9.2.27)
gD x|
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where AnA and Ax are the uncertainties in the valucs of n and X
in the original apparatus state. Since the Uncertainty Principle is

assumed to hold for the apparatus, we have
ax o~ (x| = |Dxn| . (9.2.28)

whence

1
DA =t c|DyAlax s (9.2.29)

which, upon minimization with respect to Ax , reduces to
1
2
oA |D,Al . (9.2.30)

In those cases in which the time interval associated with A may
L2
be taken vanishingly small (e.g., irmpulsive measurcrcnts in nonrelativistic

particle dynaudcs) the quantity DAA will usually be cqual to zero, and

the obscrvable A is then measurable with unliéited accuracy. Unlimited
.
accuracy, however, should be a&tainable in the measuremcnt of any single
observable, and this seens to be contradicted by Eq. (9.2.30) which at
first sight implies that there is an absolute 1imit to the accuracy with
which observables associated with finite time intcervals can be measured.
The way out of this difficuity was found by Bohr and Rosenicld (1933),
who showed that the measuring arrungement can be slightly alterced, by
means of a "compensation mechanism," in euch & way that the correct re-
sult is obtained. The compensation mechanism appropriate fcr the measure-

ment of A is represented by the addition of a term -% g2 x2 DAA to

the coupling, so that the change in the action now becones

1 2 2
S + Sa > S+Exh->3¢ X DAA + Sa . (9.2.31)
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Equation (9.2.24) again holds to first order in g . But Eq. (9.2.25)

takes the foxm

8x = g(A+ 5 A -gxDA)Dn = EADx G (9.2.32)
correct to second order in g , whence
A o= 2 oA~ X . (9-2.33)
gD = ) glD_x
X o X

Now, the valuc of D,A (or, more properly, of <DAA>) »is generally in-
sensitive to the quantum fluctuations of the system S , being primarily
determined by the geometry and parameters of the measuring arrangenment
and only sccondarily, if at all, by the "olassical™ or "average" values
of the system observables. Therefore a compensation devicc which is
adequate for tusting the predictions of the gquantum theory (c.g., in the
case of field ncasurcments, a set of mechaniccl springs connecting the
test body to a stiff coordinate framework) can be set up in advance of
the measurcrent of A  on the basis of conly a rough prior knowledgz of
the systcm obscrvables. The accurate determinotion of A mnay therefore
be made on the basis of Eq. (9.2.33) with o preeision whieh is limited
only by the accuracy with which = may be deterunincd. By choosing the
appoarctus sufficicently macroscopic the latter accuracy may ke nade very
high indced witbout, at the same tine, rendering Ax unduly larges

The analysis of the mcasurcment of two obscrvetles, A amd B,
procceds in a quite similar fashion. Here it is necessory to introduce
variables X, M and X5 5 Ty from cach of two indcependent cpporatuscs,

S and 5, , sotisfying the conditions (9.2.22). The systems S
1 2 1




and SD‘2 may be regarded as forming, together, a single apparatus, for
which the Uncertainty Principle will agoin be assumed to hold. As before,
compensation mechanisms will be introduced, i:ut in this case the rutual
interference of the two mecasurcments will prevent the complete cancella-
tion of uncertainties. The greatest possible rmutual accuracy is attain-

ed by means of couplings which preduce o change in the total action of

the form ) . o

1 2 2_A 1
S + g XA+ &%,B - 5 8 X Dy, -3 e,lgexlxe(DAB + DBA)

2 2
&, X, DBB + sal + sa2 . (9.2.34)

1
hv R o

-~ s

The teims in x12 and x22 arc compensotion terms, while the tcrm in
X)Xy is a corrclation term (e.g., in the case of field measurenents,

resulting from the effect of appropriate mechanical springs connecting

the two test bodies involved). As o result of the couplings we have, to

first order,

&5 A €%, DA + £5%, Dph , (9.2.35)

8B = gx DB+ X, DB, (9.2.36)

and, to cecond oruer,

s}

]

: 2 L
g [A+®7A - g X DA - -Asze(DAB + DBA)]D n

st 1A ) x "1

1 N .
g (A - 5 6 %,(D;B - DBA)]Dxlnl v (9.2.37)

[
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5n, = ge[B +8B-3 8% (DB + DBA)- e;axanBB]D n

X 2
= g,(B+ 35 ex(DB- DI T (9-2.38)
2
whence
6-“1. 1 :
A B gi—D;l‘,q + 3 €,%,(A,B) ’ _ (9.2.39)
) : '
6-“2 1
B s ogpw 2 ant® o (9-2-40)
2
leading to thc sirmltaneous accuracy cstimates
AA."'l + % g 1(aB) ] T (9.2.41)
stz el PR s
' o - i +ielaB) (9.2-42)
56 l(AB) oy, 9.2

8%,

the product of which, upon ninimization with respect to the product

Axlaxa F rcduces to

asB =~ |(A,B)] ’ (9.2-43)

thus verifying the Uncertainty Principle for the system S .

We may with confidence therefore take the commutator in the form

(9.2.19) - (9-2.15) in all future work. It is to be emphasizcd that the

arguncnts prescnted here hold with completc generality for all physical

systens, including the gravitational field. It is only nccessary to make

ope additional remark, conccrning the use of the "classical" or "average"

values of the systen obscrvables above. Some of these obscrvables may

occur in products (in quantitics like the slowly varying parts of

28
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DBA, etc., for example) cr may themselves be expressible as products

of other observables. Now, the average value of a product ma.y‘be equated
to the product of the average values only in the limit of high quantum
numbers, and then only in the case of systems possessing a finite number
of degrees of freedom. A ;rigoraus classical description of the quantitics
in question will therefore not be strictly valid, particularly in the
case of quantized fields. Such a flescription peglects a number of
important purely quantum effects, namely, those which give rise to the
phenomena of vacuum polarization and level shifts as well as to methe-
matical infinities in the formalism. However, the technical procedure of
"renormalization" should reinstate the approximate validity (i.e., to
lowest order) of the classical description, grovided the coupling of the
field to its sources is sufficiently weak and/or there exists & funda-
mental invariance group which sufficiently dominates the physics. At
let;st this is the case for quantum electrodynamics, as has been empha-
sized by Bohr and Rosenfeld(1950). The gravitiational field, also, cer-
tainly meects these specifications, although in this case the procedures
for remormalization are still unknown. One hopes to be able to lump at
least some of the infinities together into a renormalization of the
gravitation constant, but this remains to be seen. In the following
sections we shall refer to the use of the classical description for

all quantities occuring in the derivation of a Poisson bracket (except
those, of course, which appear in the primary commutator which the

Poisson bracket evaluetes) as the cemi-classical approximation. In

the derivations of the semi-classical approximation all guantites are
regarded as freely commuteble c-numbers. The problem of their actual non-
commutability will be only briefly considered at appropriat points in the

discussion.

9



(9.3) Green's functions-

The laws of propagation of small disturbances in the system S
are determined by the fundamental structure S,ij' appearing in Egq. (9.2.10).
It is convenient to treat this structure formally as a continuous matrix
although typically it, 1like RiL, , Will actually be a differential
operator, expressible in matrix form as a linear combination of the delta
function and its derivatives up to some finite order (usually first or
second) with coefficients involving the oi and their derivatives up to
some finite order. Becausc variational differentiation is cormutable
S,ij' is a symmetric matrix. It is also a singular matrix whenever the
systenn possesses an infinite dimensional invariance group. This follows

from Eq. (9.2.6), which admits the corollary

js’ij, RJ'A a*t = o (9.3.1)

whenever thie dynamical equations are satisfied. The R* A ? because of

their "locality" (i.e., they vanish except in the immediatc ncighborhood
of z , for cach 2 ), are true null eigenvectcrs.
Because of the singularity of S:ij' the solutions SAioi of

Eq- (9.2.10) (as has already been pointed out) are not well defired but
are determined only up to a group transformation (9\2.2). It is evident
that the general solution of Eg. (9.2.10) is obtained by adding (9.2.2)
to an arbitrary linear combinatior of particular solutions (with coeffi-
cients udding up to unity) determined by appropriatu couclery and supple-

mentary conditicns. The boundary conditiors to te adopted arc already
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implied by the # signs. For the supplementary condition it is neces-

sary to choose an equation of the form

fqm sA‘-‘ ota% = 0o , (9.3-2)
) .

where QiA s 1ike R A ? is & differential operator which may be de-
pendent on the ¢i , but which is sclected in such a way that still

another similar differential operator PiA may be found for which the

matrices
Fij, = 5,13! +f1>iA QJ,A duz 5 (9.3-3)
Fopt = fQiA RiB, dl‘x A (9.3.4)
2 = fRiA p,” at (9.3.5)

are all nonsingular. In the theory of discrete matrices "yectors"

PiA 5 QiA » RlA having these properties are easily found by identify-

ing pertinent subspaces, and considerable flexibility is allowed in their

sclection. The same is true of these quantities in the case of all action

functionals which lead to consistent dynamicel theories. Furthcrmore,

because of the underlying hyperbolic character of the dynamical equations
. Bl )

of thesc theories, the matrices Fij' s Fpps s Fa may be chcsen so

as to possess special properties which allow us to characterize thenm as

wave operators.

A wave operator (let us refer to Fij‘ for definitencss) satisfies
the following two conditiors: (1) it adnits of bounded nonvanishing

solutions 8¢ to the equation




fFiJ' 50‘" a% = o ; (9.3.6) ,

|
and (2) it possesees unique rctarded and advanced Green®s functions Gﬂ"j

satisfying the equations

o "3 b v
j Fow 629 %" = - 5, , (9.3.7a)

fGﬂk" F'k“Ji dh-x“ - 5J|i F (9-3-7b)

and the conditions

—14? ~
¢ 20 for x<x g

: (9.3.8)
G+i'j = 0 for x > x? .

Here the symbol 8i'j' denotes in obvious fashion a product of a Kronecker
delta with a delta function, while "<" is an obbreviation for '"lies to
the past of" and -">" is an abbreviation for "lies to the future of."

In a space-time with hyperbolic metric the definitions of “past" and
“future" may be made with rcspect to an arbitrary space-like hypersurface
through either one or the other of the two points x , x¥ . Bl:cause of
the arbitrarincess of this hypersurface it follows that both Green's
functions vanish simultancously when x and x?! are separated by a
space-like geodetic interval.

It will be seen presently that Egs. (9.3.7a) and (9.3.7b) are not
independent; one f.ol.lows from the other just as in the case of finite ,
matrices. It is only necessary to bear in mind that the use of the latter
equation entails an integration by parts, the admissibility of which must

be checked in com:e)d:.8 It is to be noted, however, that F , unlike

ij?
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a nonsingular finite matrix, does not posscss a unique invcrse; both

.+

- ]
-G 19 and -G

its "inverses."

, a8 well as linear combinations of the two, are

This fact is a direct conseguence of the existence of

bounded solutions to Eq. (9.3.6), which may always ve added to any "in-

verse." On the

other hand, it is to be recognized that bounded solutions

of Eq. (9.3.6) cannot vanish in remote regions of spece-tine cufficiently

rapidily to be ncrmalizable (i.e., quadratically integrable). For if

they did, then

Fij' would possess true pull eigenvectors and have no

inversces at all.

i i
Cecrnsider, now, two arbitrary functicns Q. , ¢2 , which appear

together with the wave operator Fij' in the following corbinatici:

If the functions ¢11 ) 02

i i h iy.0
f(ol Fyq o) -9 Fj,i¢2)dx .

i vanish sufficiently rapidly in remctec re-

tions of space-time, the integral of this exprcasion over 211 x will

vanish by symmetry. Since F

13t ijs a differoutial operator this implies

that the avove integral must be reexpressible in the form

i 3t
f(ol Fy5:%5

where fp.i N J ”"

-0 J'Fd o yalr = fa’*xifdl*x" ?{?F (<bli'f“i.j..<92J )

(5.3.9)

is an eppropriate homogeucous gradratic comvinztion of

delta functions and their derivatives, with coefficicnts involving the

i

propertics of the functions 011 , @

¢ and their derivatives. Since the identity (9.3.9) involves the

i

5 only locelly, it rmst evidently

hold for arbitrary functions °li 3 ¢21 , subject only to the coenditions

which permit integrations by parts.
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With the aid of this identity we may show that the Green's
#3t

functions C have the very important property of being able, in
the combination

' ' T
13 REE LI &

G n (9.3.10)

to express Huygens' principle for a solution 801 of Eq. (9.3.6):

i 4w 13" pt o .
50" = f,_.dzu'fdx fde fpj..q5/ . (9.3.11)

Here the value at an arbitrary point x of the solution 56" ie expressed

in terms of Cauchy data,

1 4
fi“ "a 8% a'z (9.3.12)

on & space-like hypersurface X having directed surfuce element dzu, .
The prooi »i Eq. (9.3.11) is carried out by chap;ing the surfucc integral
into & volume integral with the aid of Causs' thcorcm, ena tiien using

Eq. (9.3-9)s Tor x > I Eq. (9.3.11) becomes

~ future .
i L, b oy, -13° k" -ik" gt
5or = J . a'x fd (6T W - (TR0,
(9.3.13)
while for x < Z 1t becomes
. ,’\Z [} " " 3%
BoT = \j c).hxl\‘/‘dhx“(c*’i‘j Fj,knﬁok - J+ik Fk,,‘j,&bJ ) n
past
(9.3.14)

the validity of both forms followinj immediatcly from Eose. (J.3.6) and
(9.3.-7b). The extension of the domains of integration arvitrarily far

into the future and past respectively is permitted becausc of the "locality"
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of F and the fact that the Green's functions in each case “out-off"

15!
sharply beyond the point x . In the case of x lyingon Z Eq. (9.3.11)
is to be regarded as providing an interpretation of the singularities

of the Gﬂ‘j

and their derivatives, regarded as functions of x', in
the space-like neighborhood of x .

It will be noted that Eq. (9.3.7b) was used in the adsove deriva-
tion, but not Eq. (9.3.7a). If we therefore take Eq. (9.3.7b) as the
defining eguation for the Green's functions we may infer the validity of
Eq. (9.3.7a) through the following considerations: Because the functions
sol satisfy Eq. (9.3.6) and becsuse the Cauchy data (9.3.12) may be
chosen completely arbitrarily on T , it follows from Eq. (9.3.11) that

L
the function Gi‘j , which is known as the propagation function for the

wave operator Fij' , also satisfies Eq. (9.3.6), 1i.e.,

"ae
fpik.. K gk - 0, (9.3.15a)

as well as the equation
"
L[‘Gik Fk"J' dhk" = 0 » (9.3.15b)

which follows immediately from Eqs. (9.3.7b) and (9.3.10). Equation
(9.3.7&) is then obtained by splitting the propagation function appearing
in Eq. (9.3.15a) into its advanced and retarded parts. The kinematics
of these parts insure that it is only the delta function 813' or its
derivatives which can make an appearance on the right hand side, while
dimensional considerations eliminate the latter. The coefficient of the

delta function is determined as -1 from the identity
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Jd"z] atzr g Fopt Gl o gHd (913.16)

°
in wﬁich integration by parts and interchange of orders of integration
is permitted in virtue of the conditions (9.3.8).

Returning now to Eq. (9.2.10), we see that it may be replaced by

28 h
fFiJ' aA* od a'x* = - €A . s (9.3.17)

1

from which one immediately obtains

+ i ¥}y
SA ¢ = e\/ G A,J,

e , (9.3.18)

whenever the supplementary condition (9.2.10) is satisfied. If the

+
supplementary condition is not already satisfied by the BA‘ oi it is

easily imposed by first carrying out a group transformation (9.2.2) for

which the parameters 8§A are given by
N N '
set = thx\/ alrzr G*AB Q, e 5A: o , (9-3.19)

AB?
the G Lcing the Green's functions for the wave operator FAB'

It is important to check, however, that the solutions (9.3.18) in fact

satisfy the supplementary condition which was used to get them in the
first place. This can be done with the aid of an important relation

]
between the Green's functions GtiJ and those belonging to the wave

operator FAB . We note, using Egs. (9.3.1), (9.3.3), (9.3.5) and the

sympmetry of S that

2igt ?

L L
fRJ A Fj,i dl*x' = fFAB Qg dhz' . (9.3.20)




asumeny ~ emwemm s

Therefore

i - i
fdx]dz' AB Q:lB’G fdxjdx' l=‘..1(}ﬂ“1 =-RJA.

(9.3.21)

But also

4 b B .+ C" _J° hh
fd z! dz FA G B R c" = -R A’ (9'3'22)

" ]
where the GtB,C are the Green's functions for F B Now, Egs. (9.3.21)

A
]
and (9.3.22) are both "wave equations"” in FAB , having the same inhomo-

]
geneous term, - R'j . The functions satisfying these equations have
4 A

the same kinematical properties and must therefore be identical. That is,

fq'iA i’ % = fGtAB' RJ'B' atz , (9.3.23)

which is the relation mentioned. Using it we get from Eq. (9.3.18)

immediately

]
J Qm At @i d. X = fd x'fd. z' t RJ B' A,J‘ ,,(903021‘)

which vanishes in virtue of the group invarience of A , thus showing the
complete self-consistency of the supplementary condition.
It is convenient at this point to derive also another relation
similar to (9.3.23). Using Egs. (9.3-1), (9.3.3) and (9.3.4), ve have
v b, [ B T
fFiJ, RV ,dx' = J P," Fpip d'z R (9:3.25)

and hence
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fdhx'fdhz' Gﬂ‘j' PJ,B' jd x'fdx (..ﬂ"1 FJ'k" Rk-A = - RiA

(9.3.26)
But also

i Cc"B! i
fd z.fd z R C" G FB'A '- - R A ? (9'3'27)
from which it may be inferred that
fcﬂJ' P, B ah -fniA GHAB' gty | (9.3.28)

This relation is usqﬁﬁ, in the derivation of an important recipro-

]
city theorem involving tiac Green's functions GﬂJ

i, .'tk"J' ;,j'k" I 4
’ Fiyn (G -G )a x
o - [ By - By )T e
;J'k"

--f ' [d' (0 qy - 2t )6 L (903.29)

We first write

The solution of this equation, taking into account the kinematics of the

Green's functions and using (9.3.28), is

fd x J a zfd ar(Rl,GEB'A GFITKT Rl BN Mg

(9-3.30)
From this it follows, with the aid of Eq. (9.3.18) and the invariance

condition (9.2.5), that if A and B are any two group invariants, then




»

+ ¥ + 1 *F i b
BA"B-SBA -j(B’iaA ¢ 'AniaB ¢7)d x

3! ;Jli
fd xfdx' B,,(G -G )A’J

= 0 . (9-3-31)

That is, the retarded effect of A on B is equal to the advanced

effect of B on A , and vice versa.

This reciprocity theorem allows us to write the Poisson bracket

of A and B in the following simple form:

lim 1
(A,B) = D,B-DA = e_'Oe(zs B-6 “A)
lim 1 + -
c o0 ¢ (0gA=-dgh)
=jdxf ax' A, ! B, 3 ' (9.3-32)

in which the piropagation function appears. It is to be emphasized that
the value of the final expression is independent of variations in the
propagation function arising from varying choices of the somewhat arbi-
trary functions PiA s QiA N RiA « This, of course, is c;bvious from
the original definition of the Poisson bracket, but it can also be proved
directly by studying the transformation properties of the various Green's
functions under allowable transformations of the PiA s Q450 Ri A?
and making use of the invariance properties of A and B . It may be
mentioned that the functions PiA and QiA can in practice usually bde
chosen in such a way that the matrix Fi 3t is symmetric (self-adjoint

wave operator). In this circunstance
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Gd' o gH , (9-3.33)

and the Poisson bracket identities (9.2.16), (9.2.17), (9.2.18) may be
read off immediately from the final expression in (9.3.32).
A more important consequence of the reciprocity theorem is its

significance for the theory of the canonical trancformation group. The

existence of such a group is shown by the following considerations:

Since, in the limit of infinitesimal € ,

d/\siijl(6B+ °J' - SB- °j')dhx, = 0 (9-3.34)

1t follows that the quantities oF + aB+oi - 5B’oi satisfy the dynamical
equations if the oi do. By means of the Poisson bracket, therefore,
invariants may be used to mep solutions of the dynamical equations into
other solutions. For example, the inveriant B defines the infinitesi-

mal mapping

A - T(B)A = A+ €(A,B) , for all A , (9.3-35)

where, in virtue of the reciprocity theorem, the symbol T(B) may be

expressed in the form

17(B)

U

1+ 8y , (9+3+36)
85 B~ % wm = (&P, (9-3-37)

it
o
1

o
o

the symbols bBt being viewed here in their evident role as linear

operators. The mapping (9.3.35) is expressed in terms of its effect on

the class of all invariants, since it is only in terms of invariants

that physically distinct solutions of the dynamical equations may be

&
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characterized. It is easy to sce that such mappings are one-to-one, at
least in the neighborhood of the identity, and therefore generete a group.9
From this fact it follows thet the Poisson bracket (9.2.15) satisfies
not only the identities (9.2.16), (9.2.17), (9.2.18), but also the
Poisson-Jacobi identity as well; for the Poisson brackets may be mapped
into the commutators of the Lie __r_igg,_ associated with the mapping group.
To see how this comes about we first note that the result,
T(A)X , of an infinitesimal mapping T(A) performed on an arbitrary in-
variant X may be regarded in either of two guise;: (l) as an invariant
which daiffers slightly from X , or (2) as the same invariant, but
evaluated with a set of dymamical variables differing slightly --- but
physically --- from the original variables. Therefore, if we consider
the product of tx;o successive infinitesimal mappings, T(A) and T(B) ,

we may write, using the first point of view, simply

T(B) T(A)X = (1 + 38, + 585+ aBaA)x 3 (9.3.38)

Using the second point of view, however, and making the functional
dependence of the invariants A, B, X on the dynamical variables ol

explicit, we may write

o(B{o)) T(Ale]) X[¢]

[}

T(Blo + aAo] - 5AB[o]) x[o + sAo]

(L +8 ) x[o+5Ao]

Blo +8,0) '°aAB[o]

il

T(A) T(B) X -85 , X
A

= (L48, +5,+8,5, - sbAB)x . (9-3-39)




Equating the right hand sides of Eqs. (9.3.38) and (9.3.39), we infer,

from the arbitreriness of X , therefore,

[5A » bB] = 65AB = - B (A,B) » (9-3.100)

and hence

0

[d

o s [y, 8,11+ (8, (8, 8,11+ [Bg, 5y, B,]]

= 8 5 (9.3.41)

€2[(A,(B,C)) + (B’(C)A)) + (C,(A,B))]

which, ia virtue of the fact that &, = O if and only if X = O , implies
(A, (B, C)) + (B,(C, A)) + (C,(a, B)) =0 . (9.3-42)

This identity may also be proved using Eq. (9.3.32), by werking directly
with the Creen's functions (DeWitt, 1961).10

In evaluating Poisson brackets by means of Eg. (9.3.32) a possible
source of ambiguity at first sight appears to exist. Heretofore, in
referring to group invariants, we have always had in mind explicit
functional expressions involving the 01 « Actually, invariants are de-
fined only modulo the dynamical equations. It is straightforward to show,
however, that this freedom leaves the value of the Poisson bracket un-

affected. Let us, for example, replace B by

B' = B +f fi S,i dhx R (9.3.43)

where the fi are arbitrary coefficients. [The group invariance of the

second term follows from Eq. (9-3.1) together with the dymamicel equations. ]

We have




(A, B') = (A, B)+fdxfdx'fdx A, ot s,J.k..fk" ;

(9.3.1k)
in which terms in S’1 have been dropped after the variational differ-
entiations have been performed. In virtue of Egs. (9.3.3), (9.3.15%)

and (9.3.28), however, this becomes

(A, B') = (A, B)-defdxnfdzf uz‘A 1A ABanB. K"

(9:3.145)
which reduces simply to (A, B) in view of the invariance of A .

All of the preceding work has been carried out in the semi-
classical approximation with all quantities being treated as freely
cormutable c-numbers. We may here briefly indicate some of the problems
which arise in the rigorous theory. In the first place, the use of
ouantities which are commutable in lowest approximation restricts the
application of the theory to systems satisfying Bose statistics. In the
semi-classical approximation it is actually not difficult to extend the
theory to include Fermi systems as well. The details of this extension
are outlined in Appendix A at the end of the chapter. It is only neces-
sary to introduce anticommuting as well as commuting "c.pumbers." Beyond
that, however, the prcblems become difficult. The quantities in the
rigorous theory do not exactly commute or anticommute, and the order of
factors must be takgn into detailed account. It is no longer clear to
what extent the formalism is deterﬁiﬁed by phy;ics alone and to what
extent it is determined by purely mathematical exigencies (not that one

expects the two to be separable in the end, of course). The difficulties
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are increased by the fact that the Green's functions are themselves
q-numbers in all except completely trivial linear theories. In the case
of systems possessing infinite dimensional invarience groups the way out
of these difficulties is completely unknown except when the theory is
nearly linear (e.g., quantum electrodynamics). When infinite dimensionel
invariance groups are absent it is possible to give some indication as

to how one may proceed. In this case commutation relations may be written

directly for the @1 themselves, namely

[oi, o"'] = 1 Gi'j' . (9.3.46)

The problem which then arises is that of defining the “operator-propagator"
GiJ' in such a way that it can really b_e a commutator. In particular,
it must be consistent with the Poisson-Jacobi identity as well as with
the dynamical equations. Its consistency with the latter provides a
possible clue. Suppose the dynamical equations S’ i " O have been
written with their factors in some given order. Then by taking the

|
commutator of the dynamical equations with 0" , ve obtain
' k"3 4
0= [s,i.o'j ] = 1fs,ik.. . g a¥ 5 (9.3-47)

where the dot signifies that the propagation function is to be inserted
as a replacement for Sok“ in all the places in which it occurs in the
variation bs, i This then suggests that the Green's functions them-
selves be defined by

Y ] T
fs,ik.. . gt d"‘x" = - 51" . (9-3.48)

It is not obvious, hovever, what conditions the original structure




s, i has to satisfy in order that Green's functions defined in this way

satisfy the necessary reciprocity relations (9.3.33) and, fipally,
that the Poisson-Jacobi identity hold. It may be possible, neverthe-
less to build up a self-consistency scheme, by successive approxima-
tions perhaps, to answer this question. Incidentally, there is no

a priori reason ‘o insist that S_’ i should be the variational deri-
vative of some actual action operator. Its full expression may
require the addition of some small (proportional to ’A2) "non-classical”
terms. Its complete determination may also depend on & number of
other considerations, for example, on the requirement that all
criteria adopted be invariant under transformations which replace the
oi , 88 primary dynamical variables, by arbitrary local functions of
themselves.

When infinite dimensional invariance groups are present it
may be necessary first to introduce some "preferred” invariant
dynamical variables (determined in the case of general relativity,
for example, by an {ntrinsic coordinate system based either on the
geometry of space-time itself or on some additional physical system)
which satisfy a set of invariant dynamical equations and for which a
commutator like (9.3.1&6) can be written. On the other hand, it might
prove possible to deal with the original dynamical variables as if
they satisfied the commutation relation (9. 3.46), as long as all
final expressions involve only group invariants. The commutator of

two invarients A and B would then take the form

L [k 13t
o, B] = 1jd x /d x* A,y + G 3, B,J, ’ (9.3.49)
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the condition for inveriance itself becoming

(9.3.50)
A

{ N
‘jA’i « R d'x = O.
In Eq. (9.3.49) the pair of dots signify that the propagation function
[}
is first to be inserted as a replacement for 503 in all the places in
which it occurs in the variation 5B and that the resulting “product"

is then to be imserted as a replacement for 501 in the variation BA,
or, alternatively, that the process of insertion is first performed

in BA and then in 8B. The equivalence of the two procedures rollows
from femiliar properties of commutator brackets, together with the
assunmption that Gid' is itself actually a commutator. Whether
complete consistency of the quantum theory of geometry, in particular,
can be established along these lines remains to be seen.

We conclude this section by showing how the arguments and
methods thus far introduced can be used to derive the generator of
infinitesimal displacements in space-time. It is convenient for this
purpose to work with an action functional which is formelly inveriant
under the group of general transformations of the coodinates x?, even
though the system in question may not really be invariant under this
group. Such an action functional can always be constructed simply by
starting with a standard "gimplest" form and performing an arbitrary
coordinate traucformation. Metric components guv will then make an
appearance as explicit functions of the ¥'. In this way nonrelati-
vistic and Lorentz invariant theories, as well as generally covariant

theories with fixed gravitational flelds, can all be treated at once.11

It will become apperent in Section 7, furthermore, that the mcthod
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also covers the fully relativistic situation in which the gravitational
£ield itself is given dynamical properties. In this case it is only
necessary to use intrinsic coordivates in place of the :?‘ .

An infinitesimal displacement 8x' of the coordinate mesh
corresponds to the coordinate transformation x““ - - 5x'. Under
this tra.néforma.tion the functional form of the action suffers an

explicit change of amount

R T
& 'F é/T L TV (9.3.51)

where TV is the stress-energy density of the system and bguv is the

change which the mesh displacement induces in the explicit metric suv-:

uv
™ = 2383/t (9-3-52)
5gpv = qu.v + va_u . (9.3.53)

Here the dot denotes the covarient derivative with respect to the
metric guv. In order to insure convergence of the integral (9.3.51),
bx"l will be required to vanish outside of a finite but otherwise
arbitrary region cf space-time.

Since the action functional is formally coordinate invariant
the change (9.3.51) will be exactly cancelled by a variation in the
¢1 corresponding to the same coordinate transformation: x = - 5:?‘ .
This fact is of great importance, since it means that the change
(9-3.51) can also be computed by taking the negative of the variation

i

induccd in S by replacing the ¢~ and their derivatives by their

"3isplaced” values. It is to be noted, however, that when the

L7




.dynamical equétions are satisfied this latter variation vanishes on

account of the stationary action principle. This mca.ns that expression

(9.3.51) itself has vanishing value, and hence

- - v Lo uv b
o &S ‘[‘I’p bxu.v d'x -ﬁ o3 bx"1 a'x , (9.3.54)
which, in view of the arbitrariness of ox , implies

™Y = 0 (9+3+55)

Vv

In spite of the fact that expression (9.3.51) has vanishing value
its explicit form is significent, and can be viewed just as if it
represented a real change in the physical system. The vanishing of
3S simply means that the retarded and advanced effects which it pro-
duces will be identical.

let us consider an arbitrary local tensor quantity construct-
ed out of the 01 and their derivatives, the components of which may
be imagined as arranged in a 1- column array . Let us further
suppose that ¢ is a group invariant of the system. The change in
¢ produced by the change 5S in the action will vanish in regioms

where t‘>xll vanishes and will elsewhere thke the form

\ = B = v JJ-
50 8 © O.uSJ?L +p Vet (9.3-56)

-

@orresponding to the alteration in the coordinate mesh with respect to
which ® is viewed. Here the Duv are generators of the matrix repre-
sentation of the linear group to vhich ¢ corresponds; they satisfy

the commutation relations

-

T [
.’ , 0] = 5.0 -8,D - (9-3-5T7)
o
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We also have, however,

' M ab?! & 85
]
J;.Z dz G '5—°'sr

fd x'fd ZJd z! —5 e(z',.2) Gab‘ 51“ ¢ B 1.0

" 4 (.4 B0 apt a7 V'
-Jd x‘]:s.z dz';)—ae(z,z')c —pT Sxp,.v, »

5%
(9.3.58)
where @(z,2') is the step funciion:

1 when z> 2! .
e(z’z') = * (9-3'59)

O when z< 2! .

Because of the "locality" of ¢ end ™ v the variational derivatives
appearing in (9°3-58) will conmsist of linear combinations of the delta
functions®(x,z) and S(x',z‘) and their derivatives, x being the point
at which ¢ is evaluated. This means that it is almost pernitied to
replace the step functions e(z',z), o(z,z') by e(x',x), o(x,x")
respectively. In fact this replacement cén be made provided extra
terms iavolving the derivatives of the step functiorns are aadcd as
needed in order to account for the effect of the aifieventicted delta
function. Lumping these extra terms collectively into the symbol A ©.
we may therefore write

(®.Lmtme i vt qu,.v,dl*x') + 0

8t ¢ =
(o, Tp e Bx WY eyt dhx') +& (9.3.60)

ast
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where £ is an arbitrary space-like hypersurface through x. Perform-
ing an integration by parts and making use of Eq. (9.3.55), we

finally obtain

o, 58 +DYond = (0,5) +m (9-3.61)
j3 E '\/z?u'v 5x T, (9. +62)

It is seea that an infinitesimal displacement can be effected
on a group invariant ¢ by means of a simple Poisson bracket with an
infinitesimal generatorlﬁ --- which is the nearest thing to a
Hamiltonian appearing in the present formalism --- only if Ad vanishes.
AP will vanish or not depending on the effect of the singularities
possessed by the products oi the propagation function with derivatives
of the step function. Generally speaking, in a theory for which the
dynemical equations are of the second differential order in the ¢1 »
Ad will vanish if ¢ depends only on the ¢i but not on their derivatives.
Thkat &) will not generally vanish when ¢ depends on the derivatives
of oi is then easily seen by taking derivatives of Eq. (0.%.C1) and
rer=mtering that‘S itself depends on x through its denerzc=:> on Z.
Tris, however, in turn implies that &0 may in special cases vanish
for all ¢, namely, if the displacement 5X' can be ckosen in such a
way that }i'becomes irdependent of ;:}2 mIn_§uc§ cases we may speak
of a "true Hamiltonian" for the system. It is to be erphnsi"ed once
again, however, that although its use is often a convenience, the
infiritesimal displacement generator is not essential to the

quantization program.
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(9.4) The free particle and the relativistic clock.

In this section we apply the Green's function techniques to
two simple examples: the nonrelativistic free particle and the
relativistic clock. The first provides a familiar introduction to
method while the second is of fundamental importance in the theory
of measurement of the geometry of space-time.

The action functional of the free particle may be taken in

the standard form

s = %mj 2at (9.14.1)

where m is the mass and x = (xl, X, x3) the position vector of the
<
particle, and vhere the dot denotes differentiation with respect to

the time t. The variational derivatives

8s/bx, = - m %, (9.%.2)

2S 06.

]
5 /bx1 BxJ, = -nm 51J (t-t') , (9+4.3)
lead to the dynamical equations
-mx = O (9.14.%)
[ ]
and to the cquation for the Green's functioms
..t = = = t ] ]

-m G 4 8 B8(t-t') . (9.4.5)

The solutions of Eq. (9.-4.5) are readily found to be

S1




+ -1
¢t. = mT 5, o(tt-t) (t'-t)
1 1 (9.4.6)
= - m 1 _t ¢!
Gm, m biJe(tt)(tt)
e(t-t') being the step function for the present case. From this the ¢
fundamental Poisson bracket immediately follows:
= = - - s o%te
(%45 %g4) Gy 40 o, (t-t') (9-%.7)
leading to the uncertainity relation
-1
» -t?] . .4.8
Axi Ale - m 613 lt t l (9 )

The.. physical interpretation of this uncertainty relation is
immediately apparent. A measurement of xi with accuracy Axi leads a8
to an uncertainty in momentum of order 1/Axi and hence to an un-
certainty in the velocity component iiof order m-l[Axi. This leads
to a subzequent position uncertainty which increases with clapsed
time, namely: AX,, "(m'l/Axi)It-t:H The other components of position
remain unaffected.

The entire quantum theory of the free particle can be based
on the Poisson btracket (9. 7) taken in the form of tiae comrutator.
The development follows completely familiar lines. We confine
ourselves here to the derivation of the generator of infinitesimal
displaccments in time. The essemtial arguments have already been
given at the end of the preceding section. Remembering that the
change in the explicit form of the action which generates the dis-
placement 5t is equal to the negative of the variation in the action

due to the variation in x itself under this displacement we have
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8s = -gi;[iod(g'cbt) = m/ x.kstat = --léu:[:zsasé it (9+1+9)

J
and hence
. od
(x -inf 2 0t oet)
x5t = 8'x = = (x, H) 8t ,  (9+4-10)

1 /‘t.la *1 att
(x, -él?-m%( 5Lt at*)

2

H = X . : (9-4:.11)

V] g
B

The final form is obtained through integration by parts and use of

Eq. (9:4.4). The possible extra term &X [cf. Eq.(9-.3.6C)]) vanishes
- T = ~ o = 3

in the present case since Gij' g(t-t') Gy y¢ 5(t-t*) 0

Furthermore, since the Hamiltounian H is constant in time, the equation

f = (f, H) . (Selyelp)
holds for quite general dynamical variables f.
The theory of the relativistic free particle can be develop-

ed in & quite similar fashion, starting from the action functional
=
s = -J Q-#)2at . (9.4.13)

One obtains the equation for the Green's functions

o +

°*D l D 1 ¢ o
-m(1-x%)"2 [6;, + (1-X > oxx ) Gqr = -5, 4 B(t-t*) , (9-4.1y)

which leads to the Poisson bracket
1l

(x5 X5) = Cyyu = -m(l-g’g_a)-é (8, - iiiJ)(t-t'). (941 +15)

In this form, however, the formalism is unsuitable for extension

and application to the measurement problem in general relativity.
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Since the dynamical equations derived from the action (9.4.13) are

Lorentz covariant, the foruwalism itself should be mace lorentz
covariant. Wwhat is needed is a manifestly Lorentz covariant Poisson
bracket instead of one which, like (9.‘#.15) , singles out the time for
special treatment. For this purpose it 1s necessary to introduce the
proper time. Proper time, however, must be reckoned starting from
some zero point which the particle by itself is unable to provide.
For example, it is not satisfactory to reckon proper time from the
moment (i.e., space time event) when one of the spatial coordinates
of the particle has a given value, or when the ordinary time itself
has a given value. For such a reckoning would not treat all the
space-time coordinates of the particle equally, and the resulting
formalism would not, in fact, be manifestly covariant. In order to
achieve o manifestly covariant formalism wvhich is suitable for the
measurement problem, one must have available an intrinsic proper
time, and this can only be provided by a physical clock which
“gits on" the particle.

¥or simplicity the clock itself may be regarded as being
the particle. If the term "particle" is to remain applicarie this
means that the physical dimensions of the clock must be small, or
else that the clock coordinates must be "internal"” coordinates, un-
related to space-time. We do not concern oursrlves here with the
question of the practical realizability of such clocks. Ve must,
however, inquire into the nature of the action functionals vhich
describe them. For the skke of orientation it is convenient at
this point to adopt the conventional Lagrangian - Hamiltonian view-

point, although in the final development it will dbe dispensed with.

sh
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The internal dynamics of the clock will, in hhe rest frame,
be describable by a Lagragian g(q, &) depending on & set of internal
coordinates c.fl and their time derivatives. Alternatively, the

description may be made in terms of a Hamiltonian
m = p 69 -3, p, = al/aﬁé p) (9.4.16)

which is expressible as a function of q's and p's after the second
of Eqs. (9.4.16) has been solved for the q's. The symbol m is used
here for the Hamiltonian, since its value will be simply the rest
mass of the clock (assuming properchoice of the energy zero point).
In passing now to an arbitrary inertial frame it is only necessary
to note that time derivatives become proper time derivatives.
Referring back to coordinate time, therefore, we may write the
Lagrangian in a general frame in the form
X 2

L = £(q 51(1-252)2 )(l-:f)2 . (9-4+17)

The momenta Py remain unchanged in value, while the momenta conjugate

to the xi become

-1 1
p, = aA/x = [p, °(1-x)? - ;]ii(l-::ga)z
1
= mx (1-x%)% . (9.4%.18)
The Hamiltonian therefore becomes
l 1
2

H = p°§<+p&8’-L = p-:'<+m(1-'2) = (m2+p2)2
] a Pt r) o

“¢

’ (9‘!;'19)
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Just as for a particle 'w:lthout any internal degrees of freedom.
All the internal veriables are contained in the mass m.

Many different mechanical devices (including atoms and
molecules!) are adaptable for use as clocks. In the majority of
cases these are essentially conservative multiply periodic systems,
and it will suffice to confine our attention to them. The des-
eription of multiply periodic systems is conveniently carried out
with the aid of the classical angle and action variables. For
purposes of measuring Ytime only one of the angle variables is
really necessary. Therefore it suffices to consider clocks hav-
ing only one degree of freedom, with one action variable J and one
angle variable @. Other degrees of freedom may actuelly be present,
but if we agree never to disturb them by measurements, the action
variables associated with them (which determine the internal
energy and hence the rest mass) will remain constant and may be
ignored. The rest mass will then be a function of the s ngle
variable J, and the angular frequency of the internal motion will

be given by

@ = an/aJ . (9.1&.20)

The Hamiltonian equations for the clock become

1
. 2, 22 .
x = p(®+p9) ", p = O,
1 (9-4.21)
& = m@w®+pd?a, J = 0o .
»
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The internal dynamical quentity w']e will be recognized as

the intrinsic proper time. We may now ask such questions as:
where will the clock be when the intrinsic proper time has the
numerical value T, and what will the value of the coordinate time
be at that instant? With the aid of the Hamiltonian equations it
is easy to see that the ansvers to these questions are given

respectively by

- Lot} A
(7)) = p+u op(T-w i) ; (9.4.22)
t(T) = t+ m'l(m2+£2)5(7-w'le) ’ (9.4.23)

in  terms of the values of the dynamical variables X, p, © &t an
erbitrary time t. Poisson brackets of x(T) and t(7) with each
other may therefore be constructed in the conventional canonical
manner; it is only necessary to bear in mind that m and ® are
functions of J. A straightforward computation leads to the com~

pletely covariant result
G, M) ) = P (e, (9.2

vwbere - the indices on the xg have veen raised, in accord with the
introducticn of the Minkowski metric (7'¥) = diag (-1,1,1,1) and
vhere _:_co(*) = (7).

The dots are nov used to denote differentiation with respect
to the proper time. It will be observed that Eq. (9.4.24) is con-

sistent with the identity i‘xp = -1.




The covariant Poisson bracket sbove was obtained with non-
covariant methods. We shall next see how the same result can be
obtained with Creen's functions within the framework of a manifestly
covariant formalism. The simplest covariant description of the rela-

tivistic clock is provided by the action functional
1

where t is here a completely arbitrary pa.rameter,13 differentiation
with respect to which is denoted by the dot. (Note the varying uses of

the dot!), and where %2 is an abbreviation for ¥ :'cu. The variational

derivatives
1
85/85 = & - o(-x2)% = o, (9« k- 26)
85/6@ = -J = 0 , (9 k. 27)
ss/oxk = -d(m vu)/dt =m w'ru =0, (9+ 4. 28)
where -£
o= #(-x2) 3 v“vu = -1, (9-4.29)

yield dynamical equations equivalent to those of (9-4%21). However,

the second variational derivatives

1
8525/67 83 = - (8ayod)(-%x7)2 B(t,t1)
5%/67 8a' = O B(t,t?)/st (
82%5/87 84 = w v, 3 8(t,t1)/5t,
5%s/80 B! = O, (9-4-30)
2
& s/oe 52 = O,
1
8%/6 & = - dm(-3%) PR, B 8(t,t0)/ k)X
vwhere
Fav = v " NV o By’ = 0, (9-4.31)
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do not in the present case lead immediately to equations for the

Green's functions of the system. This is because the action (9.%.25)
possesses an infinite dimensional invariance group, mamely that
associated with the ar’itrariness in the parameter t. Under the in-
finitesimal paremeter transformati-n t'¥ =t - 5t the dynamical
variatles suffer the changes

8J = Jo&st = 0 ,
Be = &8t = of-%%)% 5, (9 4.32)

ot = et = W(-%x)2 6t /.
When the dynamical equations are satisfied the condition that a given

dynamical quantity A be parameter invariant is evidently

w%-rvpi:%u = 0. (9+4.33)

The action functional itself is, ©f course, parameter invariant.

In order to obtain definite solutions to the equations for the
small disturbances 5ts ’ Ste, 5% induced in the system by the addition
of an infinitesimal parameter invariant €A to the action(9.%.2 ), it
is necessary to impose & supplementary confilbion. The one which is

convenient here is

vusisé‘ = 0 . (9434
If this condition is not already satisfied it can easily bve imposed by
first carrying out an infinitesimal parameter transformation (9.1}. 32)
for which
Lt
st = (-x2) "i/ v, 8% at . (9. 4.35)
When it is satisfied it is easily seen from Eqs. (9. %.30) and((9.%.31)

that
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£ - BA % bA + u' BA '
+ + 8 ]
8% = ¢ (¢* - :—:‘3,) at? , § (9.4.36)
8A H1 BA uv! BA
o3¢ = ef(c‘“J, 571+ G Bget O av,) at? ,
where the (‘.t are the Green's functions for the wave operator
Frat Faer Faue

F@J, F@G' F@v'

Fuge Fuet Fuv',l'

1
- (A7) (~-%2)%(t,t') B(t,t?)/dt 0

= -B(t,t)/3t 0 L ° (9+4.37)
- v, 3 3(t,t1)/3t o -mnpval(-'a)-Eas(t,t')/atl/ .

The computation of the Green's functions is straightforward. One
E ML A
J > G 2] >

Gi"l Jt vanish. The Poisson bracket of two invariants, A and B

therefore reduces to

easily f£inds, for example, that the functions GiJJ, » G

o+ [ [ orr @ogy Ber B B+ B B

]
-5-‘:“ G“e. %‘ " Zﬁ,t cHv -Z—Bv,) . (9.4.38)
B! e >'d

+

We postpone evaluating the remaining Green's functions until after
we have introduced a description in terms of the proper time. First

it is important to check that the solutions (9.1&.36) satisfy




the supplementary condition (9.4.34). From the equations

AN
. " \
“5(t9t!) SJ(FSJ" GtJueu + F%u Gteuet + FG*" Gw 9»') at" \
= - a Clt..],e./a.‘t b4
f( " G + Fpeu G—G"G' + FL-W" GE 6') dt'
L | (9-4.39)
\

=-wv, G* e/ - m 3 [(-%%)2 3 6* /33, \

|

] [ "9
=f(FuJu G:tJ..v + Fue.. Gt@..v + ch" cFv ) at" /

--m2 (-kD%act Y /), /

it follows that

]
€
©

W

)
ct
ct
S

A BGwe! / ot

[}
<
«

P
ot
-
ct
~
-

1
v da™ / ot
V)
where the functions Gt satisfy

1
o m (-3 o¥(t, MY = - B(t, tT) . (9.1)

We therefore have
vubtié‘ = f[Gi(t,t') (' gg,-i' v" ZA ) att (9-4.42)
X

which vanishes on account of the invariance condition (9.1#.33).
Consider now an arbitrary local function f of the dyna-

mical variables and their t- derivatives. It is importaant to make

a distinction between the quantity f, taken at an arbitrary value

of t, and the same quantity taken at that value of t for which the




intrinsic proper time w'la has the numerical value r. For the

moment we shall denote the latter quantity by fT. The relation

between fT and f is
1
£ = f (-%2)%(r-ale) £ at . (9. 4.43)

Using the dynamical equations it is straightforward to show that
1

a /o = [(-%x3) 2 ¢ (9« k. k)

Next, let us Gompute the disturbances in £, due to the addition of

€A to the action. Making use of the supplementary condition (9.k.34)
4

and the equations satisfied by btJ and 570, as determined by the

variational derivatives (9.4.30), we find, from Eq. (9.4.43),

8%t = (8%r)_+ (3¢ /A1) wil - (8%)_ + T(yA) (%) ]
1
+ el(-x®) 2 £]_wli(oa/er), + T(3/A)(88/86) 1 . (9. 4.15)

Witk the aid of this result we may reformulate the Poisson bracket
of two invariants, A and B, in terms of intrinsic proper time. We
first set t formally equal to T, replace @ by wr wherever it occurs
in the expressions for A and 3B, and regard A and B as explicit
functionels of (x’l )-r and J_. Then, noting that the second line of
(9.5.45) disappears in the difference 8+f1_ - S'fT which occurs

in the definition of the Poisson bracket, we have

(A,B) = dede' [- % GJ@,Vu' ot :Bx" - ;‘i"’.‘ l:b'lCBth?:

$
+ 82 (c*V -G“G,v ol Wol C—

5"

-v“w'lc R o 'r‘ - Vo Sl & X,'t'J v 'l)—zév.] (9. 4. 46)
x




where the subscripts T have now been dropped.

The equations for the Green's functions take the following

forms in terms of the proper time:

o

- (/) GiJ@)v +9 Giee,/b‘r = 0,

-ov, Xt /- m 3 c;l‘“@./ar2 = o0 ,
+ v 2 . v?
- m 3% ALy -5, .

The solutions of these equations are

Gi@J' = E GiJ@n = to(¥r-17)), :
it = F (33D o(¥ (v - T )T -Th) l

AT

G* = sptaoeE(r-T) Nr-T),
i

/

' S
V' o apl PV (et NT -, S
and hence, finally,
v . 2
(A, B) =fd'rfd1"[5—Avu u)l-s—B-g-% W oot B2
-m'l('r-'r')s—A_I}wea—g:] .
‘ " &

Bx

In particular,
® -
(x"',xv)r--mlP‘v('r-'r'),

in sgreement with Eqe (9.4.2W).
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In their application to the relativistic clock the Green's
function techniques are evidently open to the criticism of being
unduly complicated. The particular method which this simple
example illustrates, howeve.r, is of great importance in the quan-
tization program of general' relativity and justifies the attention
given to it. The process of passing from general to intrinsic
coordinates will be encountered again in Section 6 and, in fact,
will almost certainly be characteristic of any other covariant
quantization procedure. It should also be pointed out that, by
using the covariant procedure in the present example, we have
gained somewhat more than the mere Poisson bracket (9.4.50).

For example, the generator of infinitesimal displacements in
proper time is readily derived from the action (9.1&.25).

A displacement in proper, time is described by a variation
#'8t in the space-time coordinates of the clock, with no varia-
tion in @ or J. [Thus the variations (9.%.32) do not describe a
proper time displacement; they correspond merely to a parameter
transformation, in vhich the change in @ effects a change in the
correspondence between t and the intrinsic proper time which
precisely cancels the proper time displacement effected by & Bt.]
Remembering again the general rule that the explicit change &S
in the action needed to effect the desired change in & 1s equal
to the negative of the variation in the action due to an explicit

change in #' of the desired amount, we have
1

8s _fm(_;(a)"é %, a(¥'st) = m&T dT; (9-4.51)
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in which t is set equal to the proper time in the second integral.

Using the form (9.1&.&9).!9; the Poisson bracket, therefore, we

(£, fm a}'d:w' ))

xor = 8 = - = - ()J'l, m) &1 , (9-4.52)
-()é*,_.‘[ m 8;"dT°)

-]

have

in which the usual integration by parts has been performed and the

rT-independence of m has been used. Dropping the &1, we have

# = - ¥ ) + (9-4.53)

and similarly

J = -(J, m) 0% (9-4.5%)

Equations (9.4.53) and (9.4.54) are verified at one by explicit
use of (9.4.49).

The role of the rest mass as the generator of proper time
displacements reflects its role as the variable conjugate to the
intrinsic proper time w-le. In the quantum theory this conjugate
relationship has the consequence that a measurement of proper time
with an accuracy AT implies an unccrtainty in the rest mass of
order 1/At. Since mass is always positive this implies that the
"slascical" or "average" value of the clock®s mass must be at
least as big as 1/AT in order that the measurement actually be
possible. It should be pointed out in this conrection that the

angle variable, and hence the intrinsic proper time itself, has
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strict validity as a councept only in the classical limit. It is
generally impossible, in any given case, to construct for a peri-
odic system, an Hermitian operator which can be strictly regarded
as & quantum proper time variable copjugate to the Hamiltonian
of the rest frame) this is & consequence of the ope-sided (posi-
tive) and discrete character of the rest-mass spectrum. Our
theory of the relativistic clock, therefore, like our treatment
of the elastic medium in the following sectionms, is essentially
phenomenological. Nevertheless, the above estimate of the
minitum mass required to effect a proper time measurement of
given accuracy has a vasic validity, as has been confirmed in

studies of specific clock models by Salecker (1957)}h




(9.5) The stiff elastic medium.

In order to use an elastic medium as a coordinate framework
we must know something about its dynemical properties, soO that we
may be able to judge the accuracy of measurements made with its
aid. Since the properties which determine this accuracy &are
mainly nonrelativistic ones, we look first at the nonrelativistic
theory. This will then be followed by a description of the log-
ical extension of the theory to thie relativistic doumain.

In the so-celled "1 gagrangiaa” scheme of coordinates the
constituent particles of the medirm are identified hy a set of
three labels ua, a=1, 2, 3. The w? provide what is generally
a curvilinearsystem of coordinates which changes with time ac-
cording to the motion of the medium. Tts “shepe" is described
with refercnce to a Cartesian inertial frame of so-called
"Fulerian" coordinates x;, 1 =1, 2, 3. The relation between the
Lagrangian and Eulerian coordinates is expressed by a set of three
functions Xy (t, \:) depending on the time t as well as the labels
y = (ul, u2, w).

Characteristic properties of the medium may be expres-
sed in either the lagrangian or the Fulerian system. For
example, if f is a density in the Eulerian system and fo is the
corresponding density in the Lagrangian system, the relation

between the two is given by

£f = %-gs%fo R (9.5.1)

where B(E)/ B(:_c_) i8 the Jacobian of the transformation from one
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system to the other.There are two principal densities which char-
acterize an elastic medium: the mass density and the internal
energy density, wvhich we shall denote by o and v respectively.
The mass density Po may vary from point to point in the medium,
but will be otherwise constant; it depends, therefore, only on
Be The constancy in time follows from the law of conservation
of mass, which may be expressed in the form

bo = O , (9+5.2)
the dot denoting differentiation with respect to the time. More
precisely, the dot will be used to denote partial time differeni-
ation when the quantity over which it stands is regarded as a
function of t and u. The same quantity may algo vé regarded as
a function of t and x = (xl, Xp x3), however,. and “in this case
partial time differantiation will be denoted by 4 subscript t.
The relation between the two kinds of derivatives, for an arbitrary

quantity q, is

a =q +aq, Vv, , (9-5-3)

v

4 5:1 = axi(t, u)/ , (9.5.14)

the comma followed by an index denoting differentiation with re-

spect to x From this relation together with the law of dif-

i.
ferentiation of Jacobians, the mass conservation law in the

Eulerian system is readily derived:
Ot + (pvi)’i = 0 . (9‘5'5)

The internal energy density A like Po » may vary from




point to point in the medium. Its variations, however, unlike

those of p,, are not "pre-set" but depend in some measure at least
on the dynamical situation. It will be assumed that the spatial
dependence of Y9 can be cleanly separated into two well defined
parts, (l) an explicit dependence on Y, reflecting a possible
spatial variation in the basic constitution of the medium, and

(2) an explicit dependence on the shape of the Lagrangien coor-
dinate mesh at the point u. The shape of the lagrangian mesh

is described by the Lagrangian metric

(9:5.6)

7av X8 1,0 *

(Here the comma followed by a lower case Latin index from the
beginring of the alphabet denotes differentiation with respect
to a u.) The dependence of Yo on the time enters only through
its dependence on 7.

The use of Po and Yo constitutes a phenomenological des-
cription of the medium, the validity of which depends on the
adequacy with which gross properties of its actual atomic, col-
loidal or granular structure can be treated by means of instan-
taneous averages. The phenomenological description has been well
established, on the nonrelativistic level, for many experimentally
analyzed solid materials. However, our program here, being of a
conceptual nature, does not hang on actual laboratory observations,
and we shall, in fact, assume the validity of the phencmenological
description in the relativistic domain as well. Furthermore, in

the relativistic extension of the theory we shall assume that we

®
69




can continue to maintain a sharp distinction between Po and Ve

The quantity will be regarded as the rest energy density due

Po

to the masses of the constituent particles while L) is regarded

as the rest energy density arising from internal stresses, i.e.,
interactions between the particles.

The form of the action functional for the elastic medium
may be inferred from nonrelativistic particle mechanics. In the

lagrengian system it is given by

S ‘/‘dth/d% (% pofciii N wo) 3 (9.5.7)
The dynamical equations are

ab

BS/8x; = r gk - (t7 X ) = O (9-5-8)

where

ab _

5 = 2 /Yy, - (9-5-9)
In the Eulerian system these equations take the form

=05 (9+5.10)

w) ab
ti3 B'a%)' Xi5aX5o0% ,  (9.5.11)

=0 (Vip * Yy, VJ) < %4553

which identifies tij as the internal stress density, giving rise to

a body force demnsity of amount

£, = - (9.5-12)

i ti303
This identification is also confirmed through a consideration of

the work done by this force on the constituent particles of the
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medium under an infinitesimal displacement Bxi 3
2 [ 3 a3 = a3
5w jfibxi a’x = Jt“&xi 3 ft X, Sxi’.b w

G e = o9

The energy supplied to perform this vork must come from the medium
itself and therefore shows up as a loss in the internal energy.
In combination with the mass conservation law, Eq. (9:5.10)

may be re-expressed in the form of a momentum conservation law:

(pvi)t + TiJ’J = 0, (9.5-1’4»)

T - pVV +1:

1 i - (945.15)

TiJ is the stress-momentum-flux density. With the aid of the

identity

T o(x)
W = - E%ET Vi,gtiy (9:5-16)

Egs. (9.5.5) and (9.5.114») may also be combined into & law of energy

conservation:

(-;- PV, vy + w) + (% PV ViVy + WYy + vy 13) y = 0 (9.5-17)

The changes in the dynamical variables Xy under the

addition of an infinitesimal €A to the action (9:5+8) satisfy the

equation
or abed +
- pd" X ¢+ (c xi’axJ,CS x,j:d)
ab
- (£778 xi’a)’b = - e3A/bx, , (9.5.18)

T1




abed 3%
e = » $Yo : (9-5-19)
7ab7ca

There are no infinite dimensional invariance groups for this

system, and hence the Poisson bracket may be written at once in

the form
(AyB) = fdtfd3gjdt'fd33' gﬁi Gid. g%j' » (9+5.20)
where Gi 3 is the propagation function formed from Green'!s functions

satisfying the equation

X} abed

£ b
TPyt (e Xy 5055 c0 ky15a) b - (VG 13080 = “Bigr (9+5+21)

The ganerator of infinitesimal displacements in time may
be obtained in the now familiar manner. The pertinent variation

in the explicit form of the action is

85 = -fdtfd?’g fo gk  A(x,0t)/3t + tabxi’az'ci’bbt]
-— ’ ) 3 1 . . .
= -jdtfd u (-2- PXy%y * wo) 5t , (9-5-22)
whence
£ = (f, H) , (9+5+239)
g = f(g bk + vy (9.5.2k)

Here, because of the constancy of the Hamiltonian H, Eq. (9:5-23)
holds for an arbitrary dynsmical variable f. The generator of
infinitesimal spatial displacements may be similarly obtained.

In this case the pertinent variation is

. . 3 o o a b
9s = -fdtf%g [poxixi,aau + 2 xi’a(xi’cauc)’b] e (9+5¢25)
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+
xi,abu =8 Xy

a'bst e l«b, sixd‘ ])

x| -ﬁt"jdsg' [po5>'cd,6t>'cd, - (t
- :Edt* fd33° [po'ij,stij, - (%

= (x‘,L ,fpo'xJ,t‘)ixJ‘, d3}3')t'=t o (9.5.26)

1p? s -
& x,j’,a);'bﬁa+x3’])

The possible extra term Ax, [cf. Eqe (9.3.60)] vanishes since
Gy3t,a o(t - t?) = 0, as may be inferred from the fact that the
velocity of propagation of small disturbances relative to the

medium is either zero (absence of internal stresses) or finite,

so that Gij' = D when t = t?. Since the total momentun

P, = fpo X, Su = fp v, a3x (9+5+27)

is conserved, Eq. (9.5.26) may immediately be generalized to

£, = (f, By) (9+5-28)

for all f. It is to be noted that spatial displacements are
treated separately from displacements in time in this nonrelativis-
tic theory; thus the su” have no dependence on t, and Bt has no
dependence on the ua.

The defining equation for the Green's function has an
undesirable feature when written in the form (9-5-21), namely,
aome of its indlces refer to the Lagrangian system while others
refer to the Fulerian system. For many purposes it is convenient

to transform completely to the Lagrangian system. A vector Ai

13




in the Eulerian system is transformed into a contravariant vector’

Aa in the Lagrangian by

a a
A = u )i Ai ? (9'5'8)
and, reciprocally,
a
Aj = x A . (9.5.30)
Furthermore,
a a a
AT, = ouy Ai,J Xp = W, Bip » (9.5.31)

where the dot followed by an index denotes covariant §i(fercatia-
tion with respect to the lagrangian metric Yab® It is important
to note that the transformation coefficients X8 and their reci-
procals na, i generally depend on the time. Thercfore, when time
derivatives are performed the velocity and absolute acceleration of
the medium relative to the Eulerian inertial frame make their

appearancc. Thus, defining

a a e a _ & <
v omu X o, a’ = ouw X, (9-5-32)
and differentiating Eq. (9.5.30), we find
a °» A a b a b
=. A . eSe
u,, A I\+2v.bl\ +ta (9-5.33)

The Green's function equation in the lagrangian system therefore

takes the following form:

L




48 a  .ic a .ic
-po(G P P G T b')

cd . #a

acde . %

i (€ G db'-e)-c - (T b'-c).d = - 6ab' . (9.5.34)

he elastic medium is most useful in providing a "labora-
tory coordinate system" when it is in a "ground state,” in
which its oscillation modes are quiescent and its bulk motion is
uniform rectilinear. This dynami¢el condition is described by the

vanishing of the internal stresses tab as well as of the quantities

a
V.b

and a®. Tt must be recognized, however, that such a des-
cription is a semi-classical one, and an investigation must be
made of its consistency with the actual presence of zero point
quantumn fluctuations. = The quantum fluctuations may be described
interms of the difference between the actual Eulerian positions
x; of the constituent particles of the medium and the average

values (xi of these positions:

s} x; = % - \xi (9-5-35)

The validity of the semi-classical approximation depends on the

accuracy with which average valuecs of products may be replaced by

products of average values. It will, in particular, depend on the
accuracy with which the average value of the lagrangian metric

may be expressed in the form

Gaw = ¢uud <xi:b) (9.5.36)

The actual Lagrangian metric is given by

Tab = <xi:a) <Xi:l) 2 Sab +5 Xcea B xc°b ? (9'5'37)

5




where Bab is the ptrain tensor:

8, = %( 8x,., + 5x,..) (9+5+38)

the covariant derivatives being defined with respect to the metric
(9.5.36) and the passage to the Lagrangian system being now under-
stood as effected by the transformetion coeffiecients <xi,a) « The
problem therefore becomes one of determining the conditions under
which the mean value of the product d X..q & xc.b will be small
compared to <7&b)' Our approach will be to begin by assuming the
semi-classical approximation and then to demand that it be self-
consistent.

The smallness of the product ©&x 8x°

cen .p lmplies that

the strain tensor itself is effectively small. A Hockz's Lew
approximation to the elastic forccs may therefore be assumed,
and, by cppropriate adjustment of the zero point, the internal

energy may be expressed in the form

B = :_L_ ca.’bcd.
2

0 %ab ®ca ? (9+5-39)

yielding for the stress density the expression

ab ca.bcd -

1t = - ed » (9.1;’40)

where the cade are now independent of the dymamical state and

depend only on u. These expressions dcpend, of course, on the
original assumption that the medium is stressless, on the average,

in the quantum state in question:
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<‘ab) = 0 , (:2®) - o . (9+5.41)

It is convenient to choose the lagrangian system in such

a way that it becomes Cartesian when the stresses vanish. That 1is,

(7“} = B, - (9.5.42)

All lLagrangian indices may then be written in the lower position,
and covariant derivatives become ordinary derivatives. The

"displacement vactors" & X, satisfy the commutation relation

[8x, ,8x,] = 1G,. » (9.5.43)

where Ga.b' is the propagation function formed from the Green's
functions of equation (9.5.34%) which, in virtue of Eq. (9.5.41)

and the conditions of uniform motion, namely,

Gay = © (a0 = 0, (9+5- %)

here reduces to

e

3
po G ab! ¥ (c&cde G d'b"e),c E 5a,'bl * (9'5'1"5)

It will suffice now to restrict the discussion to the
case of a uniform isotropic medium. The condition of uniformity
means that the "elastic moduli" ¢, ., are simple constants,
independent of u, while the condit:;.on of isotropy means that they
can depend only on the Kronecker delta. The most general

expression having the symmetries of Cabed is

Cabed ~ A tt’a.b 6cd +u (sac &bd. + bad 6bc)’ (9'5'!'6)




l .
vhere A is the Lamé constant and p is the shear modulus. ] Equation

(:9-5.155) therefore becomes

et + 4
=P Ggps * (»+ud G cb?,ca + B G gpt,ee &7 Sapy 2 (9.5.47)

which can be solved by tha standard methods of field theory. Thus,
introducing dyadic notation and meking use of the Fourier decompo-

sition of the delta function, one immediately finds

¢ = (en™ [ [aniy 5y + g, 8p) £
c‘t

b gy am] el (2o -t et (9.5.48)
vhere ¢,, § » £3 are mutually orthogonal unit vectors with
gy = Kk, k = |l‘§|, and where
1 1 1
f(k) = - = ————m— g(k) = - = (9.5.49)
Po aec A2 ’ Po of-c Bi? ’ ?
¢, = Yl e, = J(x+2uljog + (9.5.50)

The contours C-l in the complex w-plane are shown in Fige. (9-1).

The evaluation of) the integrals is straightforward, and one finds

+ 1 |1 -2 1 1
G- = gn[;(ﬁ-qv Y)'T—r‘,‘."i|6(t-t'ict'|3'5'|)

v

1 _-
e e TGRS o LAY ] , (9-5:51)

&

vhere 1 is the unit dyadic and v'e is an abbreviation for the
integral operation involving, as a kernel, the Green's function

(kn)'l|g - g‘l'l of the Laplacian operator. The quantities c,

8




. oan T— C—

-ctk  —Cik ctk ck

\._/E{ﬂ

>— -~ C+

Fig. 9-1. Contours for the Green's functions of the elastic medium.




and ¢ " are identifiable as the transverse and longitudinal sound

velocities respectively.

The definition of the “"ground state," which we may denote
by |0}, is expressible in the usual way in terms of the positive
and negetive frequency componenté of the displacement vector

16

5xa:

o) 0> = 0, (ol o, (") = 0. (9-5.52)

° From this it follows that the mean value of the product 6xa6xb,

in the ground state is given by

<(5xa(+) + 5xa(-)) 5xb.> = <6xa(+) be;/

/
\Sxa be M )

([5xa(+) , be,]> = i G(+)a.b' ’ (9.5.53)

where G(+)ab' is the positive frequency component of the prope-
gation function, the integral representation of which is identical
with (9-5-’48) but with the contours Ci replaced by the contour C(+)
of Fig. (9-1). Contracting Eq. (9.5.53), differentiating with
respect to u and u' , and then setting u = ut , t=1t', we

readily find, using the integral representation,

d = 1 1 ' 1 1 3
\ch,a ch,b) (2n)> SBJ kol ( c, k + ac‘k) 'k

)
ab 1 1 1 )
- L G +=)|k&k . (9-5:54)
5on)° Po S 2% -

The quartic divergence of Lhe final expression represents
a breakdown in the continuum description of the medium. An

actual elastic medium will be composed of & large number of

9




particles, all of which may for simplicity be assumed to have the

same mass m. The density is determined by the mean interparticle

separation 8,

=mg3 (9+5.55)

and the continuum description becomes inpvalid for wavelengths
shorter than this distance. By counting the number of degrees

of freedom in the medium one sees, in pact that thc interparticle
separation provides an effective cut-off for the integral (9.5.54).
For purposecs of making eastimates of orders of magnitude this

cut-off may be taken as

. 2n
L (9-5.56)
We then have

<6xc,a 8xC,b> 37 me ( c, + 2cl ) Sab ) (9:5.57)

and the condition that this average be smoll compared with the

metric (9.5.42) is evidently

gﬂam—%(%+%)<<l . (9+5.58)
)

This is also essentially the condition for vwhich the quantum
fluctuations in the positions of the constituent particles remain

small compared to the interparticle separation:
(ox, 0x, ) << #° (9+5+59)

Since the integral (9.5-5#) is heavily weighted toward the
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cut-off end, it is clear that Ekq. (9:5.57) provides a good estimate
of the loeal fluctuations in the lagrangian metrie even when the
density and elastie moduli vary from place to plaece in the medium,
provided only that the variation is small over a distance g
(whieh is in any case required for the validity of the continuum
description). The estimate is also good for media which are con-
fined to limited regions of space (having dimensions, of course,
large eompared to g). For the behavior of the interior of the
medium will be relatively insensitive to "edge effects,” and the
long wavelength end of the “phonon" spectrum may be adequately
treated by the imposition of periodic boundary conditions. This
fact is important since, in the analysis of the measurability of
the gravitational field, it permits us to limit the introduction
of physicel coordinate frames to particular regions of interest,
so that all of spaee will not have to be filled with an elastic
medium.

In the extension of the theory to the relativistic domain

the additional requirements
(9-5-60)

must be imposed. From this we infer

2
mg >> 0 or £ > % > !%’1 (9+5-61)

vhich says that the interparticle scparation must be large com-
pared to the Compton wavelength of the partieles if condition

(9:5.58) is to hold. It has been emphasized by Pauli (1921)




that the conditions (9+5.58) must not be regarded as implying that
there is an absolute upper limit to the values of the elastic
moduli which a medium can possess. The principle of relativity
can say nothing about the possible strengths of interparticle
forces. It can only say that if the static moduli become too
large then the above phenomenological description of the medium-
in-motion must break down. A dispersion of elastic waves mast
occur, and the group velocities will satisfy the conditions
(9-5.60).

The conditions (9.5.60) and (9.5.61) have an important
consequence for the magnitude of the contribution which the
zero point fluctuations make to the total energy density of the
medium. This contribution is easily calculated from the usual

sum over elementary oscillators:

(2n)-3£< . % ( 2c,k + c‘k) d3’kv = nafh (2c

t+cz)

<32 tecm = oy (9.5.62)

It is seen to be negligible compared to the rest energy of the
medium,

The formal mathematics required to place the theory of the
elastic medium in the context of special relativity has been de-
veloped by Herglotz (1911). Its extension to general Riemannian
space-times with fixed metric is straightforward. We retain the
labels ua for the constituent particles but now describe their

motion in terms of world lines given by a set of four functions
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& (¢, 3\) , vhere t 1s an arbitrary parameter.l3 The symbols ¥'

refer to a completely arbitrary set of curvilinear coocrdinates in
space-time. Commas will denote ordinary differentiation and dots
covariant differentiation with respect to the space-time metric
g“‘ V. Differentiation with respect to the parameter t will be
denoted by an owerhead dot and will be performel only on quan-
tities which are regarded as functions of t and u.

The Lagrangian metric Y80 vhich determines the intermal
energy density must now be determined through strictly locel
considerations. For this purpose it is convenient to introduce

the unit velocity field
2
Wae (X2 2, v o= 1, (9.5.63)

together with three other unit vector fields ni“_. i=12 3,

satisfying

nmv“ = 0 , n, at = & ’ (9+5+64)

and hence

ni‘* ni" =PV = MV . (9.5.65)

The vectors niu define a three dimensional local Cartesian rest
frame at each point in the medium. A displacement Bx1 with
respect to this frame corresponds to & displacement of the co-

ordinates f‘l of amount

5t = n”’&x

Fox (9+5+66)

83




and to displacements of the t, u? by emounts 5t, t® satisfying

P
o' = ¥ ot + A B, 5t = (-x2) é"u R, Bu” (945-67)
whence
8x, = By, 2. o, (9.5.68)
29 Gxi " Yab su® 5u® s (9.5.69)
v
Tab = Ruv XP,a X, (9+5.70)

Although the Lagrangian metric defined in this way describes the
local deformation of the medium as viewed in the instanteneous
rest frame, it will not genmerally be the metric of any actual
hypersurface. Since the quantity Va xP,a generally does not
vanish the displacement 5x1 will usually involve a displaccment
in the parameter t [see Eq. (9.5.57)1].

The rest-densities of mass and internal energy in the
Lagrangian system are assumed to be the same functions fo and
Wos 8s before. The corresponding densities in the local Car-
tesian frame are obtained through multiplication by the inverae
of the determinant of the transformation coefficients nipxg’a .

This determinant is evidently equal to the square root of the

determinant

y = det (7,) (9.5.71)

8y




of the lagrangian metric. Making use of the identity 17
A
- 2 = - - .
euvo"l"}‘ = 8 ° €40y Ny negs & = det (guv) A (9:5.72)
where € 3k and epncr'r are respectively the three and four dimemn-

sional antisymmetric permutation symbols, one easily finds that
the determinant of the transformation coefficients may also be

expressed in the form

1 1 2
- n ’ 2 3
2.2 i) 353:3\1) . (945-73)

To obtain densities in the general coordinate frame a further
multiplication must be performed by the determinant of the co-
efficients of the transformation from the local Lorentz franme,
defined by combining the ni" with v , to the lical mesh formed
by the xu . This latter determinant is just ga. Therefore the
relation between a rest density fo in the Lagrangian system and
the corresponding “"proper density” f in the general cocrdinate
frame is given by 1
1 1 =
3 "3 22 é(f 3)
£ = g9 £, = (-x) P X fq -
The internal stress density may likewlse be defined in

the various reference systems. We have

1
_ 2 v ab.
tij-ynmxp’un‘jvxlut p
1 1
BV _ B BV, +2y2 o(t,u) vo T .ab
t gani ity (-x°) - P’*GP X ,a¥ st R

(9:5.T4)

(9:5-75)




vhere t2° is given by Eq. (9.5.9) as before. Similarly we define

1
HweT +2\2 (t,u) V O % £ M abed
c = (-%°) Ly’ P op¥ P XX, & O (9.5.76)

We note that
v, = 0, MY v = 0 . (9:5.77)

Conservation of mass (in this case rest-mass) is again
expressed by Eq. (9.5.2). It is easily verified that in the

general coordinate frame this becomes
(pv"),u = 0 . (9+5.78)

mhe form of the action functional for the relativistic

meqium is suggested by our previous experience with the relati-
vistic clock. In place of the mass m in Eq. (9.-4.2 ) we put the

total rest energyf(po + wo) d3g. Thus
. 1
5 = -fdt jd3x_z (pg *+ wo)(-a'cz)2 . (9:5:79)
In varying this functional in order to obtain the dyramical
equations it is important to relember that the metric tensor appear-
ing in the quantity 32 = &y ' %V and elsewhere is an explicit
function of the ¥' . Under an infinitesimal variation 8x" in the

functions x'(t, \.1‘) one readily finds
1 1
22\2 2 2\2 v
5(- = - (- v"l 3]
( x ) ( x ) ¥ xu'v » (9-5.&)

v = W vV ox, o * v’ bxp,v R (9.5.81)




Bwy, = - P, pY Lo 3 oP ox,., (9+5+82)
and hence

65 = f-ﬂ*“ o, ', (9-5-83)

Y o= (p+w) VvtV (9.5.84)

The stationary action principle 85 = O therefore leads to the

dynamical equations

MYv=0 , (9.5+85)

vhich, when combined with the mass conservation law (9+5.78),

may be re-expressed in the form

A S (9-5.86)
M = - i‘-.“"‘.v 5 (9-5.87)
Y o= v v et (9-5-88)

The quantities f acd 'Y may be regaraed as the world Torce
density and the internal strees-energy density respectively. Ve
note that the condition vp W=l requires vu v .y ™ 0 and

hence

f“vp =0 , (9+5.89)

wvhich: also follows directly from Egs. (9.5.87) and (9+5.88)

together with the readily verified identity

(w \i“‘l).'1 = _tllV Vp.v . (9.5.90)
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The quantity T™Vis the total stress-energy density and is identical

with the quantity defined by Eq. (9.5.52). This follows at once

from the easily computed derivatives

1
A-5P)/dg,, = -3 (EEHV (9+5.91)
S wo/d &y = - %I}‘G Pv,r xc,a x'r’b tab, (9.5.92)

We postpone discussion of the propagation of small
disturbances in the relativistic elastic medium to the following
section, in which the theory of green's functions and Poisson
brackets is developed for the more general system involving a
dynamical gravitational field and a framework of clocks in

interaction with the medium.
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(9.A) Green's functions for Fermi systems.

In addition to the real dymamical variables .i of Sections 2 and 35, we

introduce Herm:lteia.n variables v?.'m satisfying Fermi statistics. 1In the semi-
classical approximation the v}v commte with the 01 but anticommute among
themselves. The same conventions as 1. the text will be adopted for assoclating
ipndices with the point labels x and z . Indices associated with the anti-
commuting variables, however, will be identified by the use of boldface type.
Since the \y%u anticommute they must be contained either linearly or in
completely entisymmetric combinations in all dynamical quantities. Therefore
boldface indices induced by repeated variational differentiation with respect to
the VL' will anticommute among themselves while commuting with any light face
indices induced by variational differentiation with respect to the oi « Such
indices will be written in the order in which the variational differentiations
are perfohned, and the type of derivative involved will always be the so-called
"right" derivative. Thus the variation in a physical observeble A due to

variations 801 ’ 5\3}»' in the dynemical variables is given by
1 4 i N
A = f(A’iso + A”fv&/)d x = f(&o A,i - BV}'A’Aj;J)d X (A.1)

the variations 501 5 5\'{%1 being assurmed to have the same comutation properties
as the dynamical variables themselves.

In the present case a dynamical quantity may bYe a group invariant without
being a physical observable. A physical observable A (and also the action
functional S) must not only be a group invariant but must also be composed out
of combinations of the v&:-lu of even degree only. If it is also real (Hermitia.n) »
then its variational derivatives of order 1, 2, 5, 6, 9, 10, etc. with respect

to the \ﬁv will be imaginary (anti-Hannitia.n) while its variational derivatives
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of order 3, 4, T, 8, 11, 12, etc. will be real (Hermitian). Furthermore,
regardless of its reality, its veriational derivatives of even order with
respect to the 1}' will commute with everything while its variational deriva-
tives of odd order will anticommute smong themselves. Reflecting this latter
rule the formalism below will be set up in such a way that quantities bearing
an even number of boldface indices will elways commute with everything while
those bearing an odd number will always snticommute emong themselves. The
symmetry end reality properties of the two kinds of indices will not, however,
generally follow the pattern which holds for coveriant differentiation.

In the following we shall simply rewrite the pertinent equations of
Sections 2 and 3 in the modified forms necessary to account for the new variables

W%-v, commenting upon them only when points of clarification are needed. There

are now two sets of dynamical equations

s = O and s = 0. (A.2)
»1 ’i,

The infinitesimal group transformation law (9.2.2) becomes

1N oy
sol r R

-\ i8¢ ax' , (A.3)
i
By ) i E}'Ll I
\t.-fj " j
vhile the condition (9.2.3) is replaced by
f [/ SN AT LI 1 s\ ’J.‘\_'
\
RA’J' RA)J' R B? | RBi,Jl RB’)J’ R A ll»
L i 1, i 3
RA)J' RAJJ' R Bt RB')J RB') N Ru.A
~ ~ne
i y -
L! LY L]
= . e ag 4X . (A.4)
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Equation (9.2.4) remains unchanged. The quantities RiA, Ré'vA » RiA’J. R R&'b,j' 5

R}X’ 3 are real while the quantity RiA’ 3 is imaginary. The product of the
ar/ o

'
latter with RLB' is, however, real, since it may be written in the form

] 1 i J'
RS, = 3[R i, Bl . (A.5)

i
R As ‘u
In these and all future equations the order of factors must be taken into account.
L}
It will be noted that the group parameters SgL are here assumed to be real

*
numbers which commute with everything.
The condition (9.2.5) for group invariance becomes

i Ly o4
f(I’iRA + I’iRA)dx = 0. (A.6)
s
In virtue of the law
(XU); = - X, ,U+X, , (A7)
~w AV AN,

for functionals U of odd degree in the q&», we obtain, on taking the vari-
ational derivative of Eq. (A.6) end remembering the symmetry properties for the

induced indices,

e v J' J' J' N
iy Ly L U LR s L™ )
o a x* = - = a'x', (A.8)
] J' J'
RY.
Ia_}_-j' I'E!l WLA V’ I,J'R A"i&f I’i'/ ,Aﬂ,

/

which, when epplied to the action functional S , yields the relation demonstra-

ting the group invariance of the dynasmical equations:

*The possibility of anticommuting group parameters also exists, but since it has
no epparent physical interest we do not comsider it. It is encountered, for ex-

emple, in the gauge groups of massless fields having spins 3/2, 7/2, 9/2, etc.

Since these groups are Abelian the structure constants vanish. The general non-
Abelian case would involve anticommuting structure constants.
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1
/o8 Aa:l - R’!"Aai AL i
a .I:' : 5 } 8¢ . (A.9)
¥ = Rl U Byt

The minus sign on - R,v Asd results from an interchange of anticommuting factors.

When the dynamicael equations are satisfied we have

J'
s;i.j' S,i&: RY . .
a'x* =0, (A.10)
T
8., B.gar R
23y ,‘3.1\, A
which shows that the sclutions of the equation
/‘ .1'. + JI / .
S .41 B B A
/S21) 1138 Ao e o _ef (A.11)
' .
S . a1t S,q41 / 8, Vi, A
N\ \"":l‘i'j ’A%‘L;,- A \ ’A'V

’
‘

for the veriations induced by the change S -+ S + €A 1in the action are not vell

defined but are determined only up to a group transformation (A.3). To render the

solutions unique we introduce two sets of real functions PiA s Qip and two sets
w

w
of imaginary functions PiA ’ Qi A such that the continuous matrices

) —~ /o A A
Fggr Fige 8,05 S,apr \ [ [P % Pi
: »™ = W v a'z , (A.12)
A A
F 1] F ] S 1 s | P Q P Q
e T ) \my S/ U
1
Fyp = f (R g + Q&IARE}\&,) d"x B (A.13)
B! i1 B Bty .4
F, = f =B - mhp ®) ', (A.14)
M/

are all nonsingular wave operators. Use of the Green's functions for the first

of these wave operators yields solutions of Eq. (A.11) satisfying the
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supplementary condition

+,1
Jiagsy

We note that FJ" AB"FB

A

.13 .
inary. Correspondingly,

+ giAaANbdux = 0. (A.15)

are real while

Fisqe s J., iJ,a.re:Lmag
Gﬂ,j' ﬁ
A 9

Mprs
nmst be real

while G%L is imaginaxry.

The defining equations for the Green's functions of the wave operator

(A.12) ere
i’k"J' tk" s '. Jl
F:l.k" Fik" G .. G Y . E':I. (o}
i w . atx" = - ) (A.168)
: ;u;",j' k"3 J'}
U " G v Q. O
@ \\;.,&k k'/ \ £ },ﬁ ’
r\ Gtik" Gti'ls' F LLIFY 1" "Wyt ﬁ ‘1 0
k" k"3 L J
. wolax" = - (A.16V)
L { ]
R o YR o 8,4
”~ M W L

We do not repeat the proof that one of these equations follows from the other.
It carries through just as in the text in spite of the presence of anticommuting
quantities, provided the factors are placed in the order indicated. Again a
Hurgens?! principle can be set up for solutions 501 ’ Sﬂcjw of the homogeneous

equetion defined by the wave operator, namely

f / 11" Gi};\:\ /fp’ " fll.! na‘ 508'
( fdz fd x“fd z ( podle I8 (A7)
i 13" l ' ' 8
By G ‘f“ " ™ jug | | BV
lad MA A
where G = G -G for sll G's and where




(A.18)

fpi.Ju @2‘9\/

Y/

Here fp'i,J.. is real while r“i,J.. » fpi';)" ’ 1“1,3.. are imaginary. The
w W o

functions ¢ 1 ’ 01&" etc. may here be of either the commuting or anticom-

1
muting type.

Equations (9.3.1T) through (9-3-31) of the text are replaced respectively by

r~(F F 5 ted' \ b\
iJ)? 12: A b = _e‘/ 1 (A-19)
1
3 b,
F&J' Fij' \5At‘lf,~ -\A’i'/ »
v w
5, %ot \ Cle23' 2P\ [a .
= -G\-)k ’ 4 'x* » (A—g))
+ 1 ﬂj! o+ 4
N
A L b +AB* i i
5g = fd x [a'zr c™F(q g8, % + QiB,sA*qw) : (A.21)
~yt
) F.y
3 1 J'i LYy Bt n
f (RJ A —ReJA) 4 4a x! = fFA (Qinl QMi’ﬂ') d z!, (A-22)
EREY

L b J Gﬂj, Gtim’.\ ' :
fd xfd z? FAB(qu, c}?. ) = -(R'j & -R;LA) , (A.23)
ey
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fd z' , dhz“ FA Gth RJ C" -I& ) B - (RJ
fos' gy

N + Bt J*

RJ
|1 (" [e,®
(/¥ 5t v R 2
J duxl = -
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N . 4 Gﬂ/g" Gﬂvgﬁ: PJ’
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1 Bt
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i
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I_Vii

Rﬂ‘:j;)’ (A.24)

-Rw ') atze y (A.25)
Rg:B') i (A.26)
d'zt , (A.27)
1 \
[ ®a (A.28)
w [
(A.29)
B! gk, (A.30)
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+ ¥
BA B -58_A
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/Gﬂ:J ol A, g
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o [ab fat [(
' ]
' B \.ﬂ. X
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-T-J i G‘J '& B,i
- (A 3t By v)
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GELit gy ‘1‘ ELE 301 A
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f 1 THdi ' 3 ¥ 1y
Wl o) Lt WA sy
A
= c (A.34)
Since the reciprocity thecrem holds, a canonical transformation group may again

be introduced in order to show that the Poisson broekets satisfy all the usual
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on brooketwoy be written in the form

identities. We note that the Polss

i3t % LAY
G G B, 51

' b b ' '
(A, B) = fd xfd xt (A,i A,Mj;) Gb" . . . (A.35)
G B
'/ ’4:!: 0

A A '
The functions Pi " Pi ’ QiA » %A may ususlly be chosen in practice in

such a way that

Fijl = FJ'i » Fi,j' » FJli » FiJ' - FJ'i - (A-36)
LYo A Ay A Adn, A
In this circumstance
GBI L R M. G, N
Gﬂi’ s B $£1 , %2! - 64‘11 , (A.37)
o)
G%'l: = -G*.'l'iv » Gw - Gg‘:%“ » |

and, in passing to the rigorous quantum theory, the commutator

_ _ {e*, B)
i(A, B) = [A, B] = f(A’1 A,i) dx

(¥ B]

o, o3°1 -let, ¥\ /3,4,

w [ o
= [a*x [a'x* (A, A ) . (A.38)
f f e oy 031 -8, vy \»

23

may then be camputed as if oi o le satisfied the commutation relations®*

# The curly brackets denote the anticommutator.
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16,

(o, o3
tof, v'1 = -1 cW :
W o9 = 1o¥'
by W) = 1ol

(A.39)

Beyond this point we encounter problems of operator consistency which require
a separate investigation. We note, however, that the propegetion functions on
the right of Eq. (A. 39) possess the reality and symmetry prorerties demanded by

the commutators or anticommutators on the left.







(9-6) The interaction of the gravitational field with a stiff elastic

medium carrying a framework of clocks.

We have now reached the point in our discussion at which the gravita-
tional field may be introduced as a dynamical entity. It may seem un-
usual that a study devoted to the quantization of the geometry of space-
time should devote so much preliminary aitention to the quantization of
physical systems which occupy space-time. As has been pointed out in
the Introduction, however, it is only by measurements performed with
the aid of such systems that a meaning can be given to "space-time
geometry" in the first place. Furthermore, the general theory of measure-
ment (in which such systems play an essential role) and its mathematical
analysis through the theory of Green®s functions, vhich is basic to the
covariant approach, had also to Dde developed first, in Sections 2 and 3.

We now put every thing together into a combined system. The consti-
tuent particles of the elastic medium will themselves be taken as rela-
tivistic clocks having rest masses depending on action variables J.

We may speak of an angle-and-action-variable field, 6, J, which is, in

effect, a conceptual jdealization of an actuml clock framework. The
masses m may have an explicit dependence on u as well as on Je.
¥ 23

The rest mass density will be given by

pg = BF > (9.6.1)

where n, is the particle numoer density in the Lagrangian system, which

may itself depend on W . Conservation of particle number may be expressed

in either of the forms
n., = O

(o) ’ (m)l),p = 0 . (9.6.2)




Conservation of rest mass will follcw in the present: case as a consequence
of the dynamical equations [see Eq. (9-6.14)].

Since the metric components 8|.Lv are nov dynamical variables, subject
to their own independent variations as functions of the space~-time coordi-

nates ¥ , it becomes important to make a clear distinction between the

# as point labels and the functions x(t, u) vhich describe the world

lines of the constituent particles---a disitaction which was unnecessary
as long as the metric remained fixed, as in the preceding section. To
aseist in making this distinction we shall replace the symbols < (t, g)
for the world-line functions by the symbols z(t, u), @ =0, 1, 2, 3.
Furthermore, it will often be found convenient to regard the qunatities
appearing in a given covariant expression sometimes as functions of the
2z's (and hence of t and 'gy) and sometimes as functions of the x's.
Tensor guantities regarded as functions of the z's will be written
with Greek indices taken from the first part of the alphabvet, while the
same quantities regarded as functions of the x's will be vwritten with
Greek indices taken from the middle of the alphatst. The z- or x-

dependence of quantities bearing no indices will generally be clear from

the context. Since the 2z's, but not the x's, are dynamical variables
the relation between the two types of quantities is not symmetric. Thus

for a vector A"‘l we have

A% = & /LS(z, x) A atx (9-6.3)
®rJ
o= a“ajdtJ'd-"}_z_%%%ﬁ) 5(x, z)A% , (9.6.4)




from which it follows that dynamical variations in Aa and A" are

related by

a2 = & fb(z, x) oA a*x + A%,

A 8P , (9:6.5)

B

M n 3 d(z) a e v
DA = O afdtjd 2‘ a-(é’——}’l) 5()(’ Z) BA A v Bz . (9-6:6)
It is also to be noted that although variation and differentiation with

respect to x, t, or u commute, variation and differentiation with

respect to 2z do not. Thus we have

a a

a _ a0
B(A :B) = B(A t,B + A7 U :B)
= o 30 a .a .y y .b
= (%A )’[3 - (A t,_’ +A" u ,7) (dz 1;,5 + 82" ,u ’5)
- (e a 7 e Qe
= (%A ),[3 - A ,752 B (9:6.7)

Equations (9+6.3) through (9:6.7) hold unchanged in form, except for the
number of indices, for all tensors and tensor densities.
The action functional for the combined system may be taken in the

form
1 1
= fdtjd3g g & - (ag+ vy (-32) - JgaR a | (9.6.8)

[4)]
1]

where R is the Riemann scalar. The dynamical equations are

o= B = 0 B- m(-?)%l = R nle - ), (9-6.9)

o - g = g = - aﬁ?‘% SRS G (9-6-10)

0o = EEO‘E S,z‘i TaB-s , (9-6.11)

o = %zw =V, (9.6.12)
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where

1
M = g2 (&Y -32&7R). (9.6.13)

In the covariant forms of Egs. (9+6+9) and (9.6.10) @ and J are to be

understood as scaler fields. From the latter equation it follows that

m =0 , (9.6-14)

and hence the rest mass conservation law (9.5.78) holds.

The action (9.6.8) possesses two independent infinite dinensional
invariance groups: the general coordinate transformation group and the
group of transformations of the parameter t .+ Under the infinitesimal
transformations x'" = ¥ - 88" , t' =t - 5t, the dynamical variables

suffer the changes

8 = Jb = 0 ,
1
se = o8t = of-z%)2st,
(9.6.15)
6za = 2%t . 5,(0‘ ,
Sgpv = axu_v + va'p. ’
which lead to the following characterization of an invariant A :
BA (o2 . S
w 65 + Vv gia = 0 2 (9'6'16)
LB 2%Eﬂ— (2B ).g & O (9+6.17)
528 T, u) 5% = :

L]
The quantity DA /agm3 is here to be understood as obtained by first
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computin,, the variational deriveiive aA/sguv and then transforming from
the x's to the 2's via Eq. (9:6-3)

In order to obtain the equations satisfied b small disturbances
a number of somevhat cumbersome \7aria.tional computations must first be
carried out. An outline of the principal steps involved is given in
Appendix B at the end of the chepter. The results, for variations GiJ s

519, S’tza, Sigpv jnduced by the change S — S + €A in the action,

are
(z) ap + oot dw ot _ BA N
mn(wwpsoﬁ+v5®.a- &5:]) = -€§5 » (;.3,1-3)
d(z) o _+ S5A
B 52% u) BV 8 Jq T8, (9.6.19)
- %%)E) <’I‘B7(2 sioﬁ..’ - siﬁy'a) + ([ (p+w) vc‘vﬁv7v8 + 'zvo‘vnse’8
+ zvbv"tu8 - vc‘vﬁt78 - v‘7v51:at3 - ca[575] 3175 + mwavBStJ) 'B>
- - 2B, (9620
1 82
1l 2 o vh 1 oT Aot * * *
162 (2% - 3% ) @M(8%8grepn * O Bppegr = O Egpemr 7 0 Errecp)

1
1 2
+3 8% (@ ST - 2 2RV - 2T + @96 R - 3 ¢V RIS,

1, Bvg .0 1 * Vv 1l wg: i 1 vOo.T
-'2'(T az)_o_+2rﬂ‘"°‘8z.°_+-§:r 52.°_+§[(p+w)vp'vvv

-
P R M- v T . et - LY - MW ]sto__r

18
+ 1 ooVt s - e BA (9-6.21)
2 B ’
Guv
where s+043 and s~ 8 are the advanced and retarded forms of the invariant

strain tensor,

s

1
e -é(bz -8 + SzB_a + 5509) . (9.6.22)
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[The quantity, b% is here related to the primary variation 53;1\/

in the sense of Eq. (9-6.3), mot Eq. (9:6+5).] This important tensor
will be seen to play a rather ubiquitous role in the theory.:L9 From
(9-5-15) it is apparent that variations produced by an infinitesimal
coordinate transformation make no contribution to it. One may easily
show that the strain tensor in the Lagrangian system [ef. Egs. (9.5.3_7)
and (9.5.38)] is obtained by projecting the invariant strain tensor into
the local 3-spaces perpendicular to the world lines of the constituent

particles:

1 )
Sab = 3 %%ap = Pa7Pe5z-’:az »v%p (9:6.23)

In order to solve the equations for the small disturbances it is
necessary to impose supplementary conditions. The following conditions

are convenient:

VWiPs®t = 0, (9.6.24)

]
(o]

(%" - % v e ., (9-6.25)

If these conditions are not alreadysatisfied they can be imposed by first

carrying out coordinate and parameter transformations (9.6.15) for which

l
5t = '2) J ( 52)2 avﬁs t, (9-6.26)
521 = jG vl'rl O'D - }égv'c-g'rlp')stg-r'p'.o" dhx s
(9-6-27)

wherxre the (rJ wv' are the Green's functions satisfying the equation
1

62 ga‘r Gwv| = Ruo' GMV' = -auv' . (906.28)




when the supplementary conditions h.oid, the equations for the small dis--

turbances may be solved with the aid of Green's runctious satlsfying

] °©

. -4 - + : +
| 1 /FJJN FJO" (0] o] \ ﬁJ"J' G J"s" G " G Jll,r'sz
' A
+ 3 ot %
’ ‘ F@J" 0 0 0 G 'GHJ_' G e"en G ®ll G 9"7' 5. u
' a z"
wpn (] " "1 "
l. \ T O Faen Fae ‘ o J3 6*¢ e' G ¢*® 78’
' J op e"t" + * + ~t 4
' FwJ" 0 F e" Fw ) KG G"C"J' G encnel G e G G'I'C"'Y'S'J
5(z, z*') o} 0 0
' 0 8(22') © 0
7!
o] 0 Sa 0
° ° O %7, e (9.6.29)
where20
FJJ, = - n(w/dy) 8(z, 2') , (9.6.30)
Figp = ~ g =2 vas.a(z, 2%) , (9.6.31)
Fagv = - [’m"'oz".ﬁ 8z, 21, = - v [v,8(2, 2, (9.6.32)
(] 4]
Foet = - 7 (Bereyp - Ryo@c sge,) - [(vav’t.‘3 + vavstay
+ v3v7t as- + vasta7 - vava 1',‘76 - v‘rvst',aB
_ . BY®
o ) Byeiglp | (9.6.33)

the equations
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et 1,87 ey ) ety
F ok o (2" > ) - Bpy )
1 -] 5 75 7.5, B
-3 [(2 vc‘v"tB + avﬁv7ta - vavﬁt A

Brd eter
Cy )578 ]

B (9.6.3%)
P = o oe, 2, (9.6.35)
1 750
P = - 2 (T0t357€'). Tprrﬁﬁe" +_ 78 €ty
.+ = 3 (v v7t65 + av6t57 + vﬁv7ta6 + vasta7 - vc“’vﬂt76
- vWOoP _ OB7B) 5 crep 2 (9.6.36)
1 1
€|€l & 1 ) a7 5 1 w 76 oqe el€| - s aﬁs e' g'
P =36 85-588 )67 8.8 " ung %R L
1
+ % gz(gOﬁR75 + g70R%® L7eP0 PIR® & &7 POg
- % 805875R)675€'§' (2 vW7B® 4 o PyTe® o P
- vIVOLP coa"a)ﬁ_’a’?'lCt R (9.6.37)
and where
%pt = Eop 5(20 2') (9.6.38)
5037'5' =30 7865 + 506857) 8(z, z') , etec. (9.6.39)

Delts functions of z and 2' , rather than t, u and t', u', are

14
used here in order to absorb the Jacobians which appear in Eqs. (9.6.18)
(9+6.19), (9.6.20)+ The proof that the solutions obtained with the
Green's functiong of Eq. (9.6.29) actually satisfy the supplementary

conditions (9.6.24), (9.6.25) is outlined in Appendix B.
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It may be inferred immediately from Eq. (9.6.29) that the functions

£ A £ XA S i€
GJJQ.;GJ7 » Cgyrer 0 097 ’ 09715193 R

%
S elJs

The Poisson bracket of two inveriants therefore takes the form

vanish.

0 BB/5J"

o BE/Ba’

o &, @' G"?m. o5/627"
© Copyt Gnﬂ?. Copytat zl,g,} ?gm.

where the G's are the propagation functions formed from the cts .
The transition to the proper time, which is the first step in the
process of passing completely to the intrinsic coordinate system provided
by the elastic medium and its fremewvork (or "field") of clocks, is carried
out in just the same way as was doni for the relativistic clgck in Section
4 . Equation (9.4.43), with (_;(2)2 now replaced by (-22)2 , 1s again
used to define quantities taken with & definite numerical valuc of the
intrinsic proper time u)'le. Equations (9.k4.l4l4) and (9.4.15) suffer only
slight modification, now taking the forms
(0
a:fJBT = (v f»a)T , £9.6.41)
% Qa -1 * 4 ]
5*1'1 = (371) + (Vv f’a)_r ® [-(5 e), + T( /) (873)
( -1[ sA o, BA ]
+ € zT fT(w) (ET)T + T 5(%)1 . (90 l’l‘J‘a)

The Poisson bracket of two invariants, A and B , regarded as explicit
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It may be inferred immediately from Eq. (9.6.29) that the functions

3 A % t 9yt + te +
G JJt 3 G J 2 G J7'5' 2 G e F) G 87'8' F) G Jv ? G ng' vanishe.
The Poisson bracket of two invariante therefore takes the form
< 3 e [43,0 (BA BA BA z) BA
(A, B) fdtfd B‘fdt fd}}v (55 , %, 0 3-1—-)-“"3 rgoa)
] 1]
0 GJe' Q Q 5B/8J
G G 0 0 BE/Ba"
= o' “ea (9.6.40)
o oyt c '
0 g O© 7T G ey 88/62”

1 L]
O Gy %’ Copy'st 3=z 33:) 227,6,
where the G's are the propagation functions formed from the Gi's .

The transition to the proper time, which is the first step in the
process of passing completely to the intrinsic coordinate system provided
by the elastic medium and its fremework (or "field") of clocks, is carried
out in just the same way as was doni for the relativistic clgck in Section
L . Ecuation (9.4.43), with (-ia)-é now replaced by (-éa)-é , is again
used to define quantities taken with & definite numerical valuc of the
intrinsic proper time a)'l@. Equations (9.U4.L44) and (9.4.45) suffer only
slight modification, now taking the forms

ar /or = (r). £9.6.41)
Sif_r = (Stf)_r + (vaf,a).r (D-l[-(si@)_r + T(a»/a].)(si‘])'r]
+ e ) ;T f_r(nw)'l[(%)_r + T %D(% e ] . (9. 4. 42)

The Poisson bracket of two invarients, A and B, regarded as explicit
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functionals of Jf (za)_r ’ gpv becomes, after dropping the subscripts ,

(A, B) = J‘d'rfd3afd'r'fa3&' (% , g‘:\fa > %%’-B;_.;' )
'

. APNES 8J¢
o} GygrV’ @ 0 5B/8J
a -1 oy? o] y!
X - v G S, G 15 6B/Sz-
. Y AR y' <l G .. 1g1 d(z?) 5B R
‘ (o] G(ﬁ GOB@'V a) By*'s ] CUATLD BR T
An Y
(9+6.43)
vhere
' ot o t -1 ol ' -l
£a7 = G ; -G e,v7 o™ 4+ vw Gee,v7 ®
o -1 y' <1, w o -1 dw yt L1
- Vo GV 0T 55 - Ve TS StV ¢ (9.6. 4k)

The angle variables have now been dropped from the theory and the invariance
condition (9.6.16) no longer plays a role. The condition (9-6.17), on the

other hand, takes the modified form

w isé a Z) aA = (o] . -6-"}
g =P + 2 gé,;})’ (%)'B (9 5)

From Eq. (9-6+29) it may be seen that the Green's functions GtJe, ’

+ ¥
G aJt ? G ee' satisfy the following equations, expressed in terms of the

proper time:

noaG:@Jl/)aT = - noa}tJel/aT = -8(t-1 )S(B)Bvl) )
(9. 6. 46)

- n(y7) G*JG, + noac*%./a: = 0 .




The solutions of these equations are

o oF (v - 7)) By, ul),

N\

"

\

,& ~

ot . = TSt (yan) o(F (v - TT - T o(g w)

+ % -1
G eJ. = - G Je. = i n
ml
whence
| | t .
e A A= R A
P e'

(9:6.47)

(9-6.148)

It is shown in Appendix B that explicit expressions may also be obtained

for the Green's functions Gﬂe, ’ Gioﬂe' . The results are
+
Coper T O
sz@' I
vhere
Gi(z z') = ¥ e(i(-r - 1)) 8(u, u') T (o + ¥ )':L dr
’ rw, Y4 1’. O ' O ’
- U +y WWPGE D = -8 (2 2') .
.B .a
The Poisson bracket (9.6.43) may therefore be rewritten in the finel
/43 3 BA BA 3(z) ®A
A, B) =Jd7dujm4jd ! =
(A, Jw 3(5-5,6201, -r,’&)s%)
0 5(u,u’ )v7'(n w)t 0 SB/SJ';
for N (o)
-1
Qy? o ] [o ]
- 1 7 7 s 4
X va(noa.)) 5(u,u') ¢!’ +vev G g 58/5z
L | d(z') 8B
0 4 15 gqiT—-Ty-———
\ %op cba?' 5/ ™, 537151‘ .

(9-6.49)

(9.6.50)

(9-6.51)

(9:6.52)

form

(9-6-53)

We call attention here to the fact that theories for special limit-

ing cases may be obtained by stripping appropriate rows and columns from

99




the matrix of this Poisson bracket, and by appropriately siﬁplifying the

defining equations for the Greents functions. For exumple, in the case

of the pure gravitational field the Poisson bracket reduces to

b 4, 8A ° 5B
(A, B) = fd xjd X rsu— GI.IW.T‘ m—' » (9-6-5!})
v T
where the Green's functions satisfy the equation
1
1 2 o vr 1 uvoT, pw.i
26 (éd g -38 8 ) GO'TN'X"pw
1
1 7 _uovT ¢ - By
-3 8 BTG e -8 e (9+6.55)

and the quantities A and B satisfy the invariance conditions

(8A/3g = 0 , (BB/Sguv)_v = 0O . (9+6.56)

pv)-v

Since the formslism for this case is considerable simpler than that for
the general case, it may be argued that by introducing the elastic medium
with its framework of clocks we are making the analysis unnecessarily
complicated, at least insofar as the quantization of space-time geometry
alone is concerned. It has been pointed out in the Introduction, however,
that the theory of the pure gravitational field suffers from a major defect,
namely the difficulty of finding interesting invariants, A and B,
within its framework. Although the simpler formalism will doubtless find
application to certain problems, the more general formalism is essential
for gaining insight into the physical nature of the gravitational field
and, in particular, for the analysis of the measurability problem.

Another example, that of the stressless medium in a fixed metric, can
also be treated as a special case. The Green's functions for this example

happen to be expressible in terms of rather simple geometrical structures,
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and since the solution has some points of interest a brief account of it

is given in Appendix C.

We now consider the final step which must be taken in order to pass
completely to the intrimsic coordinate system defined by the local proper
time T and the labels uw® . Since the quantities appearing in the
Poisson bracket (9.6.53) are already regarded as functions of T and
5 s our goal is practically in sight. All that remains is to introduce
a basic set of invariants in terms of which all physically meaningful
quantities for the combined system may be expressed. This can be accomplished
by taking any completely descriptive set of tensor quantities for the system
and projecting them nnto the intrinsic coordinates with the aid of the
derivatives 'za,a and 'za which then disappear from the theory. The
simplest such set is composed of just the metric tensor itself tegether

with the action variable field J .

In the intrinsic coordinate system the métric tensor becomes

= oaoB = (o] =
Eoyo) = Z%68g = V% = °t ’ (9.6.57)
= 3P _ B _
Bo)a = *Z,0%p T VBT, T Va ? (9.6.58)
ap = za’aZB’b%ﬁ = Yap - Va'n (9.6.59)
of which the contravariant form is
R ; (9-6.60)
g0 o 8 (9-6.61)
gab = 7a’b, (9,6,62)
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vhere

cb b a ab
Yac? = aa ) v

(9.6.63)

L]
~
°.<

gnse the composition of the medium is given, through specification of the
-
explicit forms of the functions no(ge » ¥oly, Yap) ? mggi J), the ten

quantities v_, J completely determine the dynamical state of the

Yap?
gravitational field together with the medium and its field of clocks,

a’

insofar as this state has observational meaning relative to the system
itself.
Poisson brackets for the components of the intrinsic metric may be

obtained by first computing its variations. One readily varifies that

= C. =
56(0)(0) = 2v s 5 = o , (9.6.64)
= a B
Bg(oja = 2VZ S R (9.6.65)
a
Ssa.b = D2 ,aza,bsoa . (9-6.66)

Therefore, using the dot followed by a subscript (0) , a, or b, ete.
to denote covariant differentiation with respect to an intrinsic coordi-
nate (and with respect to the intrinsic Y-metric), we have, from Eq.

(9'6;53),

+ G

abct-dt +G

+ Gac'd"b + Gbc'd'-a

(gab,gc'd') = Gabc'd' abdf-ct
+ (Gac' + VaGVcc).bdc + (Gad’ + VaGVdc)-bdc

+ (Gpor * MG¥er)iaqr * (Opas * G¥a0)ger » (9-6-67)
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(8qp » s(ot)c') = Ggp(ot)e! * Cab(ot)ct * Yabc'- (o) * Ga(ot)et b

*+ Gyeor)era * (Ca(or) Va8 pet * (Gger * Vo) up(or)

+ (Gb(O') - vbG).ac' + (Gbc' + v.vacl).a(os) F3 (9-6-68)

(&(0)a ? 8{0')1:') * Gro)a(on)bt * F(0)a(or) bt * Geoyant+(or) * G(0)(0*)prea

+ Gaotypr-(0) T (Coron) * )egpt * (S(oypr = Fprdea(or)

+ (Ga(ol) o vaG)-(O)b' + (Ga'b' + vanb')_(o)(o') , (9.6.69)

(8 » I') =~ [va(nom)'lb(g; u)ly - [vb(now)‘la(uJ u)l, , (9:6.70)
(S(O)a , JV) = [(nocn)-lﬁ(’a‘{ 1::)].& - Va_(o)(nou))-l‘é(xs E:) 5 (9.6.71)
(3,3 = O . (9.6.72)

Since the propagation functions appearing in these Poisson brackets have
always previously been defined in manifestly covariant terms, they may in
particular be computed directly in the intrinsic system. The whole theory
is thereby rendered icvariant and completely intrinsic.

It will be noted that Eq. (9.6.64), which was originelly imposed as
a supplementary condition, is automatically satisfied once the angle
variables have been eliminated from the theory and the proper time has been
introduced. It is, in fact, the condition which is necessary in order that
the parameter T remein the proper time under the variations 52> N S%V .
The constancy of 3(0)(0) , which it expresses, implies that g(O)(O)
must have venishing Poimson bracket with everything. This 1is readily
verified with the aid of Eq. (B.2,1) and (B. 22) of the Appendix together with

the evident relation

xt/ar =G> . (9-6.73)
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We have

- [o3 7! 5!
(8(0)(0) ’ ga'b')’ v vﬂz ,B.z »b! [Gq37'8' + 0087"5' +

*+ 2 Cyiptep +2 (657, + vbpv7,),65,

+ 2 (Gyge * ¥, Gv&,),a,,.]

?
5"
sat

1
+ Vava(ca.,t 8 +3 GGB"]")’B'

= 2 _27

bl v VB(G 21818

1
B 065?)071

= 2271

STC BV CRVVES

and, similarly,
(8(0)(0) ? g(o')a') = 0, (&0 ? ‘-”(o')(o'))

Also, because of the T independence of n, and o ,

(g(o)(o) , J') = 2[(nou>)'15(}.1; &')L(O) = O
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+ vavB(Gda,

:a'ZS':b' [(6v7')95’ N C}VB')"y'

Gws. o7l

B

= Vﬁ(GV.,i).Bst - VB(GVS,).By,]

(9.6.7%)

(9.6.75)

(€.6.76)




The dymamical bebavior of the system in the intrinsic coordinate

frame is entirely determined by the ten Einstein equations:

G0N0 o 1 g(0)(O)

g@e | %T(o)a y (9:6.77)
ab 1 .ab
G = -3 T .

The Einstein tensor-density on the left is a function of the 7., Va
b4

and their u and T derivatives. The stress-energy density of the medium,

on the right, however, is a function only of undifferentiated variables.

Explicitly,
(0)(o) _ ab
T Po * Yo + vavbt D
O)a ab
(08 vt , (9-6.78)
ab ab

™% = %7,

or, in covariant form,

Tioy(o) = Po* %o
To)a = = (Po* VolVa (9+6-79)
Top = (Pg * ¥o)Va¥p * tap ¢
where
tap = TocToat o - (9.6.80)

From these facts we may draw the usual conclusions about the number of

degrees of freedom possessed by the gravitational field. ‘the elastic
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medium possesses four degrees of freedom at each point :b , three of

vwhich are external vibrational ones while the fourth is the internal one
associated with the clock. These degrees of freedom are dynamically
described by the momentum-energy conservation law, vwhich here becomes a
necessary consequence of the four coniracted Bianchi identitics. This
law, however, is only of the first differential order in the variables
Yapb ? Va ? J. Moreover, four of these variables may be expressed in
terms of first T-derivatives of the other six through the so-called

initial velue equations (Foures-Bruhat,1956 )

T (O) = - (po + wo) 3 (9-6.81)

- 26 (0)

0)

-2 Ga(O) = Ta(O) = (po + wo)va + tabvb . (9.6.82)

Therefore there exist eight independent combinations of the 7y, » Vg
J which are associated with the four degrees of freedom of the medium.
The remaining two independent combinations correspond to two independent
combinations of second-order Einstein equations. These are associated
with the two degrees of freedom (per point Jb ) possessed by the
gravitational field.

It should be remarked, of course, that the actual combinations of
variables associated with the varicus degrees of freedom are exceedingly

difficult to find. Although a great amount of effort has been directed

toward their discovery---they being the so-called canonical variables of

the Hamiltonian approach to general relativity---success has so far been
limited to the case in which flatness conditiona are imposed at infinity

(Arnowitt, Deser and Misner, 1960). On the other hand, it is clear that
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knowledge of these variables is not essential to the quantization progran,
nor even to the asking and answering of questions of fundamental physical
importance. This 1is particularly well i{llustrated by the discussion of
measurability contained in Section 8.

It was pointed out in Section 3 thet in order to go beyond the semi-
classical approximation the problems of factor-ordering and self-consis-
tency of the operator Green’s functions would have to be solved. A
suggested mode of attack on these problems involved taking the commutators
of a complete set of invariant dynamical variables with the dynamical
equations written in some invariaent form. In the present case the invariant
dynamical equations would be those of (9.6.77), written with their factors
in a definite order, and the invariant variables would be the 7., V.,

J. On the other hand, it seems most undesirable to make the rigcrous
quantization ol the gravitational field itself depend on the presence of
another physical system, in epite of the fact that the fundawental geo-
metrical nature of the gravitational field can be physically elucidated
only through its effects on other systems. This becomes particularly
obvious in the present case when one considers that the problem of rigorous
quantization is intimately related to the problems of fluctuation phenomena
and renormalization, which lie precisely in the domain for which the con-
tinuum description of the elastic medium breaks down. The phenomenological
cut-off which had to be used in Section S to describe fluctuations in vcue
medium could hardly be expected to fit easily with the complete absence of
an & priori cut-off for the gravitational field. One hopes, therefore,

that a consistency procedure can first be worked out for the pure
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gravitational Green's functions of Eq. (9.6.55), without the necessity
of finding invariant dynamical equations, and then later be extended to

the case in which other systems are present.
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(9.7) The quantized gravitational field.
Although the quantum description of the gravitational ficld has many

points of similarity to conventional quantum field theory, it nevertheless
scems incapable---or cgpable only with difficulty---of incorporating cer-
tain conventionally accepted notions. Nowhere is this tetter illustrated

than in the problem of defining an ener@'-density for the gravitational

field or, in more technical terms, a generator of infinitesimel space-

time displacements. If is not actually difficult to formulate the problem,
or at any rate it is not difficult once an intrinsic coordinate system has
been set up, as in the preceding section. A displacement 6T , Sua with
respect to the intrinsic coordinates is described by a variation in the

za of amount

52" = éo‘af+az°".as'ua s " (9.7-1)

with no accompanying variation in e, J, or gp.v » The change in the

explicit form of the action (9.6.8) which generates this variation is given by

- TaB&z d)+z
J o

5s

-Jd'f/ai%(T(o)(O) 8T, (o) * T(o)aa"-a + Ta(O) Sua.(o)ﬂabaua.b). (9.7.2)

By the arguments at the end of Section 3 the variation which this change

induces in an arbitrary local invariant ¢ 1is expressible in the form
' ot ot). at
o = (o, j(T(O,)( )57' + Ta,( )au ) d31_:£")_r,_=T + A0, (9.7.3)

in which it is assumed that the clocks have been adjusted in such a way that

the hypersurface T = constant, through the point at which ¢ is evaluated,

is space-like. 2
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The difficulty which now appears, however, is that the extra term
Op will not generally vapish even wvhen ¢ is one of the basic variables
Yap?Va ° This may be seen at once from the fact that both singly and
doubly differentiated propagation functions occur in the Poisson Brackets
(9-6+67) et al which are to be used in the computation of the first term of
(9+7:3)s In the process of passing from the Green's functions to the pro-
pagation functions, as in Eq. (9-3.58), the step function will get differen-
tiated sufficiently so that extra terms will unavoidably appear.22 Whether
these extre terms can themselves be obtained through a simple process of
taking & Poisson bracket with some appropriate quantity is unknown. The
prospects for this, however, are not encouraging. The only case in. which
it has so far been found possible to introduce an energy concept for the

gravitational field is that in which flatness conditions at infinity are

assumed (AXnowitt, Deser and Misper, 1960). The total energy then acts as 8

"time" displacement generator for the canonical variables, but these variables

are physically nonlocal and depend, themselves, on the asymptotic conditions.

The existence of a space-time displacement generator is, of course,
not essential to the quantization progrom. For the rest of the chapter, in
fact, we shall get along quite vell without it. There still remains the
question, however, of the most suitable variables with which to work in
developing the theory further and, in particular ,oin developing useful
approximation methods. From the point of view of the logical structure of
general relativity the primary variables would seem to be the components of
the metric tensor, since these are the quantities which give direct and
{mmediate information on the geometry of space-time. In the intrinsic

frame, however, the metric components describe dynamical properties of
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‘both the elestic medium and the gravitaetional fiéld, simuldaneously and in,
a highly interlocking fashion. The pgutual interférence of the two systems
is very obvious in Egs. (9.6.67) et al in which all the propagation functions
Gapetat ? Gabet ? Gaptet 2 Gapt » G, Ga(o)bic' , etc. appear at once. More-
over, a direct observation of the metric components would require measurements
by means of additional instruments similar to the medium itself (with its
clocks) and subject to the same disturbances. But the reason for introducing
the medium in the first place was precisely to use it as the primary stan-
derd and to give it lasting -utility -by making it sufficiently stiff. What
we seek here are not the components of the metric tensor but a set of variables
which are better at describing the gravitational field itself independently
of the medium, as well as & set of instruments for measuring these variables
having properties supplementing those of the medium.

The propagation of the gravitdtional field itself is principally
described by the functions 6037'8" Io be sure, these functions depend to
a certain extent on the elastic medium, just as the functions GOB‘ and
G depend to a certain extent on the gravitational field. However, near
the light cone the behavior of 6037'5‘ is determined by the gravitational
field a.lone.23 Beecause of the occurrence of derivatives of propagation
functions in the Poisson brackets (9.6.67), et¢. it would at first sight
appear to be very difficult to obtain even an approximate separation of the
mathematical description of the system into a gravitational part and a part
referring to the medium. However, closer inspection shows that these
derlivatives occur in just the right way to make such a separation possible,

provided the field satisfies a weakness condition which we may leave some-

vhat vague for the moment but which will be made more precise presentlye.




This possibility stems from the fact that the terms involving the differen-

tiated propagation functions in Eqs.(9.6.67) et al have their origin in

the terms bza.‘3 + BzB, o contained in the invariant strain tensor appearing

in the variations (9.6.64),(9.6.65),(9.6.66). Consider now the Riemann

tensor. A variation in the metric of amount 8z + 5z, is mathemetically

(017 pto
identical to a coordinate transformation and therefore produces a variation

in the Riemenn tensor given by

5z + R SZG SZG

SRygye = Fopysee @5 0% «a T Faeys °F 1p

€ €
+ RoBeS 5z . + Roﬁye 52z 5 (9.7.u)

It will be observed that the Riemann tensor occurs as & factor in every term
of this variation. Therefore if we compute Poisson brackets of components
of the Riemenn tensor in the intrinsic coordinate system, every term which
involves one of the propagation functions GO@?' > Ga7,5, » GQﬁ
also involve the Riemann tensor as a factor. In states for which the

¢ 5 G will

Riemann tensor differs only slightly from zero these terms become negligible,
and only the propagation functions Gcs7'5' are left.

It therefore appears that variables suitable for describing the
gravitational field by itself are simply the components of the Riemann
tensor, whenever these components are small. That the liemann tensor should
thus enter so directly into the description of the gravitational field is,
of course, not surprising. The presence or absence of a real gravitational
field is, in fact, determined by the value of the Riemann tensor. If the
Riemann tensor vanishes there is no gravitational field; if its components

are small the gravitational field is "weak." Of course, certain components

of the Riemann tensor may become large even for a "weak" field if
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the coordinate system is badly chosen. But this circumstance can be

avoided with & good stiff medium by assigning the labels u~ and setting

the clocks in an intelligent manner. The quantum fluctuations of the

medium as well as oscillations induced by the "weak" gravitational field
itself will then have negligible effect on the Riemann components. It is
important to note that such oscillations produce only a relative (fra.ctional)
change in the components of the Riemann tensor vhereas they produce an
absolute change in the components of the metric tensor. This circumstance

has its immediate re®lecticn in the linearized theory of gravitation, in
2k

which the Riemann tensor is a group invariantS although the "potentials"
themselves are not. It suggests, moreover, that the linearized theory
should provide a good starting point for approximation procedures, .and
indeed it will do so provided it is not used to settle global questions
or used indiscriminately in the ultra high energy domain where violent
fluctuations occur and where the effect of the gravitational field on the
light cone itself must be considered. In short, it must be used with
caution, and the full rigorous theory must always be kept in mind.

The equations of the linearized theory, or what should more properly
be called the "weak field approximation" when sources and hence nonlinearities
are introduced, may be obtained from the results of the preceding sections
by regarding both sources and fields as small disturbances in the vacuum.
We begin with an empty flat space-time. Then, in given reglons of intecrest,
we introduce stiff elastic bodies of limited dimensions, each in a state of
uniform rectilinear motion,25 with oscillatory modes absent except for the
zero point fluctuations, and each defining a local Minkowskian coordinate

system with the aid of its own framework of synchronized clocks. The
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introduction of these bodies produces tww results: (1) a change in the

action functional for the system (previously a pure vanishing gravitational
field) , énd (2) a deviation of space-time from flatness. Denoting the
departure of the local metric from Minkowskien by '5guv » we have, in the

immediate vicinity of oze of the elastic bodies,

1 T A
(YT - VTt (

which is just Eq. (9:6.21) simplified for the present situation. Here we
use Greek indices from the middle of the alphabet to refer to the intrinsic
coordinate system defined by the body, instead of separating the equation
into parts corresponding to the space and time indices a, b, etc., and
(0). Similarly we shall replace the coordinate labels ua and T Dby

xM , not forgetting, however, their intrinsic origin. The strees-ener%y
density in this system is, of course, (T"Y) = diag (pgs Oy O, O)¢ We

may ignore the dynamics of the clocks except when we come to consider
measurements of time.

Next, we give to the gravitational field a "free" component in
addition to that produced by the introduction of the elastic bodies, which
may be described either semi-classically or in g-number terms, depending on
the state in question. If the field is sufficiently weak the superposition
principle will hold and this extra component may be lumped together with
the Sgu.v of Eq. (9-7-5). It is to be understood that the superposition
principle reed hold only in the immediate vicinity of the elastic bodies
where the intrinsic coordinate frames actually exist; it need not hold in
the large. Thus the geometry of space-time may now depart widely from

flatness over large distances. The condition for "weakness" of the field

ng

v
agc-i',p). b 58r.))\..vcr'r - 5g0'p:'rx - as’r).,crp) =- » (9:7.5)




and local validity of the superposition principle becomes simply that the
product of the Riemann tensor with the square of the linear dimensions of

the elastic bodies shall be small compared with unity. This, in turn,

imposes a limitation on the bodies themselves, namely, the ratios of their

masses to their linear dimensions must be small compared to onec.

The fact that space-time is now permitted to have an appreciable
macroscopic curvature means that the word used to describe the bulk motion
of the elastic bodies must be chenged from "uniform" to “geodetic."
Furthermore, the small scale curvature will induce internal oscillations.
These oscillations are described by the homogeneous form of Eq. (9.6.20)

which, in the present approximation takes the form

[ (o3

T 1
PV v (82,0 ¥ 88,5, " -é&so.,,u) *Y 0 0, (9.7-6)

in which the clock variables have been neglected, the condition (9.6.61..)
has been used, and the juvariant strain tensor and internal stress density

are taken in the respective forms

1
s, = (8%, %82, * sgw), (9.7-7)

Multiplying Eq. (9.7.6) by po'l 9 differentiating with respect to x’ »
symmetrizing the resulting expression in the indices y Bnd v, and
remembering that the derivatives of v° vanish (uniform original motion),

one gets

g.T 1 -1, © 1 =1, ©
vy (Bp.wcn - aR;.u:r\rr) *3 (P Ty ;o'),v *3 (pg %y :c):u 0, (9:7-9)
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where, from Eqs.(B»7) and (B.8) of Appendix B,

1 ; '
BRyoyr = 3 (88, 01 * B&r,,y = B8ingy ~ BBgy,ur): (9-7.20)

Since the original space-time was assumed to be flat, expression (9.7.10)
really represents the full Riemann tensor, and the symbol 5 may be
removed ;Tom in front of the R ovT ° Therefore, remembering the conditions
(9:5.T7), as well as the fact that (v'') = (1,0,0,0) in the intrinsic frame,

we may write the spatial components of Eq.(9.7.9) in the form

1, -1
8sb = Rago)w(o) =3 (Po 't

ac:c):b '% (po-ltbc:c),a * (9.7.11)
This equation has been used by Weber (1960) as the basis of proposals for
the direct experimental detection of gravitational waves. We shall also
make important use of it in the analysis of the measurability of the
gravitational field in the next section.

It will now be convenient to rewrite the basic equations of the weak
field approximation in several alternative forms. In view of Eq. (9.7.10)

equation (9.7.5) can be written

MV 1l pvy 1 v = o = K
R =1T'R = -3 ™, R, = Rgy » R = RM (97-12)
which is the linearized Einstein equation. It can also be written
1 1
va = - E(Tpv - Eﬂva), (9.7-13)
T = Tp” . (9.7.14)
From the linearized Bianchi identities
+ 5 . .
Ruw-r:p * Ruv‘fp:cr Ruvpcn 0, (9-7-15)
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it follows that
@Y - _15 #R), = 0. (9.7-16)

which imposes the lowest order condition

v
™Y, = 0 | (9.7.17

on the stress-energy density. This is, of course, trivially satisfied for

('IP'V) = diag (py, 0, 0, 0) in view of the (proper) time independence of p,-

The ebove equations are also applicable, however, to situations in which the
elastic bodies are subjected to sudden impulses arising from internel devices which
are introduced for the purposes of measuring relative velocities or rates of strain
(as in the next section) , provided the stress-energy of these additional devices is
itself taken into account. By repeated use of the Bianchi identities as well as

Eq. (9.7-13) one obtains the important eq_uation26

e}

OR

BT RuWT:p

1 1 1
= 3 (Tp.c -2 '\LGT),W + (Tr-3 anT),p.a
1 1
- (Tp,—r -2 Tl|.rrT),vo' - (TW' - r‘vch),p.'r , (9-7-18)

which ensbles the source-associated components of the Riemann tensor to be ob-
tained directly from the stress-energy distribution with the aid of the familiar

relativistic Green's functions D* masslese fields, which satisfy the equation
UaD't(x -x?') = - 5(x- xt) . (9.7-19)

The use of these Green's functions is, of course, valid only in local regions.
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The components of the Riemann tensor are conveniently separated into
two sets, analogous respectively to the electric and magnetic components of

the electromagnetic tensor of Maxwell!s theory:

Esp = Ra(o)n(0) ? (9-7.20)
By, = }a-eacdRcdb(o) . (9.7.21)

The 3-tensor Eab is obviously symmetric. Its trace is found, with the aid

of Eq. (9:7.13), to be

E, = - ,1; (T(0y(0) * Taa)* (9.7.22)

Ha'b , on the other hand, has vanishing trace but is not symmetric when

moving masses are present. Its antisymmetric part is given by

1 1
3 (Bgp - Bya) = - €apeT(0)e ° (9.7-23)

The algebraic identities satisfied by the Riemann tensor may be used to show

that its components can be re-expressed in terms of Eab and Hab by the
equations
Ra(o)b(0) = Fav Reab(0) = Ccdalab’ )
Rapea = - abeScaffer * 3 Cavefcar’er 2/
_ 1 1

Furthermore, using these equations together with the Bianchi identities,
and introducing dyadic notation, one may show that EJ and 'E'{q satisfy the
[ 4

following analogs of Maxwell's equations:
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VuEsV.J, s
A o MA e 3
VxE+'§~-O D
mw A
: (9-7.6)
v-H =0 ;
"o o

<
= = J 3
~”

the tilde denoting the transposed dyadic. Finally, the second order equations

(9.7.18) moybe.rewritten in the forms

1 . .
©0)(0) * 3 Dyab = Ta(osb = To(0)sal #(9-7-27)

1 . (9-7-28)

1
-2 [Tab
1

a 2Eub

o

2
5 .
OBy = -3 €pcal(Tpe = 'bci'):d - Tc(O):db

It is of interest to note that Egs. (9.7.11) and (9.7. 27) egree with the
Newtonian theory in the static limit and may, indeed, be used to fix the size
of the units through comporison with experiment. In the static limit, with

T(0)(0) =Py s Eq. (9-T7-27) becomes
1
AT L (9-7-29)

In the Newtonian theory, on the other hand, we have a scalar potential ¢
satisfying

VP = G0, = TP, (9-7-30)

in terms of which the equatioh.nf motion of the comstituent particles of a

medium may be expressed:

-1

i = -0 =0 tap,p (9-7-31)
Introducing the Newtonian strain tensor
1

sab = 2 (Sza:b * Szb:ﬂ) 2 (9.7-32)
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we are therefore led to Eq. (9.7.11), provided we make the correspondence

Eb ¢ =~ %ap (9.7.33)

in agreement with Egs. (9.7.29) and (9.7.30).

We may also note that only the 3-tensor Eab’ and not H,, , has thus
far appeared in the equations which determine the effect of the curvature
of space-time on bodies which occupy space-time. This is because we have
confined our attention to non-rotating bodies. It has been shown by
Papapetrou (1951) and Pirani (1956) that when spin is introduced, the
3-tensor Hab enters directly into the law of force. The dynamical equations

which these authors give for a particle of mass m and spin angular momentum

tensor 203 satisfying

S e zoﬁéa = 0, (9.7.34)
are
e _ O .6 £ (04 -6 78
mz = P+ 3 R 875> L , (9.7.35)
2P - (r_"‘y;‘5 . zﬂyé‘” 7. (9.7.36)

Here the dot denotes covariant proper time differentization. That is, if the

particle is imagined to belong to an ensemble defining a velocity field va s

then

b
Q
B
1
4\!
B

W oe xHar , B ) vy s SECe (9:T:37)

Equation (9.7-36) expresses the condition that the spin propagate along the
world-line of the particle in as parallel a fashion as is consistent with

its remaining purely spatial [as demanded by condition (9.7.3%)] and
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therefore g;ves simply the genercl relativistic Thomas precession.
Equation (9.7.36) yields a deviation from geodetic motion of the porticle
jtself. The spin equation has been used by Schiff (1960) as the basis cf
proposals for measuring the general re}ativistic corrections to the ordinary
special relativistic Thomas precession. The porticle equation, on the cther
hand, will play a fundamentel role in the next section in the cnalysis of
the measurability of Ha.b" In Appendix D it is shown how both equations are
derivable from a single momentum-energy conservation law.

The commutation relations for the 3-tensors Eab and Ha.b can be ob-
tained directly from the commutation relations for the components of the
linearized Riemonn tensor, which, since only the propagation functions

G

Lot Tt are now involved, moy be computed as if the S%V satisfied the

commutation relations

{og

v ? 580..1,1] = 1 Guw"’l" . (9-7.38)

In the weak field spproximation the Green's functions from which these
propagaotion functions are formed satisfy the equation [ef. Ea. (9.6.55)]

1 T 1 2. % ‘
7z (" - 3 "o otptAt T T 5‘“’91)‘: ’ (9.7.39)

of which the solutions is

+

G-uW",T' = (qucrnv’r ® f‘l«l'rnvﬂ' - np.vncr’r)Dt(x" x*). (9.7.%0)

By a stroightforword computation, which makes use of Egs. (9.7.10) and

(9.7.19), one finds

[Eab ’ Ec'd'] = [Ha’b ’ Hc‘d‘]

1 T .1 T T

P T
T (8 B et os® e = B

T h
a'bb cd.)v D(x - x'), (9.7-1)
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[Eab ’ Hc'd'] =" [Ho.b ’ lE:c'd."‘l

1 T T T T T P 2
=51 er(® P by * 2 pa® pe = B a® ed VaD,f(x - x'),
(9.7-%2)
Where STa.b is the transverse-field projection operator:
T 3 -2 9 .
5 EL D, e —— ¢ 5 (9+7-143)
ab ab a}a gc‘B
and where
D =D -D |, o®p(x - x') = 0. (9-7-14)

Since the gravitational propogation functions GI-L Vol Tt

the matter propagation functions Gp.v' end G in the weak field approximation,

are uncoupled to

the commutation relotions (9.7.4l) and(9.7.4%2) are also satisfied by the

"free" components of E ond H . which remain after the retarded (or advanc-
ed) solutions of Egs. (9-T7-27) and (9-7- 28) have been subtracted out. A study
of these :'free components leads to the concept of gravitational quanta or
grovitons. From the homogeneous forms of Eqs. (9.7-26) ond the fact that the
free components of Ea.b and Ho.b are symmetric and have vanishing trace,

it is not at all difficult to see that the Fourler decompositions of Eg;ee

and Hizee have the general forms

free _ 2 L2 ik & 3,0
,f:” = (4n) fk e 5 -’gaga)aI + (o180 +£2§¢)aH]e o (d&,(fk )
+ h.c., (9-7-45)
gfree "2 [.2 ikp.xu 3 0
H = (bxn) k [53132 +£221_)a1 - (:121 - e )aII]e (d.}fv’d—k )
+h.c. , (9-7-16)
where (K') - (Alfdu ©) 5 ©= x ='|k|, ond vwhere 21 £ 85 0T the
: s °
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Fig. 9-2. Quadrupole strein induced in a sphericel object by a
plane gravitational wave propageting into the page,
for the two polarization states, I and II .




mutually orthogonal unit vectors of Eq. (9.5.48) chosen, for definiteness,

in a "right handed" fashion so that

31"33 = eijkgk . (9.7.47)

11 ? vhich are functions of k, define "polarization"
.

states of their respective plane vaves. The existence of two such states

The “amplitudes" a; , @

corresponds to the existence of two dyneamical degrees of freedom per point u

(here 3&) which was mentioned at the end of Section 6. From the fact that

t ot - t t = = -
et -8 g T a%tesm T S X% %) )
¢ (9.7.48)
t 1 1 1 = = - =
S1S 2t 88 (2% - 882 = %5 % (aafp ¥ S )s
where
1 ==
et. = 22 (e, +e) et ® 22 (e +g) (9.7.49)
R N 17w 2 w2 B T )

it follows that the two states of polariiation are obtainable from one
another by rotation through 45 , Referring to Eq. (9.7.1ﬂ it is easy

to see the effect which & polarized plane gravitational wave has on the
strain tensor of a medium with which it interacts. This effect is schema-
tically indicated in Fig. (9»2) for a plane wave propagating into the page.
The vave induces an oscillating transverse quadrupole moment in an otherwise
spherically symmetric object. From the figure it is clear that a rotation
through 90° yields again the same state of polarization.

Using the Fourier decomposition of the function D(x - x!), namely,
- 2 o V_oxtV
D(x - x*) = (2n) l‘ §[ -J )(k ) L iy (x=x"V) 4l
. ¢t Jeo' ¥

= -1[(2n)'{[‘%ei“u("p'x'“)(d5§/k°) - h. c.] , (9.7.50)




together with the identity

(218 - &800ab(®1%1 = £o80)cat (8280 * 2081 )an($185 * 051 ca

T qxl

= T
= 0, 0t

T & 8T &t (9.7.51)

5 ad” bec - " ab- cd ?

where

T

- = -2
5} ab (ﬁlsi + egse)ab = Sab - kak kb R (9.7.52)

pog

it is easily verified that the commutation relatioms (9.7.41) and (9.7.42)

are satisfied if and only if
[aI(E) 2 aIY(’k:)] = [aII('li) ) aII,(l-i‘»./)] = 6(.1,{»,- }?j) F) (9'7:55)

while the commutators of all other pairs of amplitudes vanish. The

amplitudes a aIT, aIIT are recognized as graviton annihilation and

’ %1p
creation operators respectively.
Creation and annihilation operators for states of definite spin are

cbtained from the amplitudes 815 2179 etc. by the unitary transformation:
a, = 2°(a. ¥ia_). (9:7.54)

Under a rotation in the positive direction through an infinitesimal

angle 5¢ about the vector e the vectors e suffer the changes

~3 ’ g
Bg; = &5 X § B0, (9.7.55)

and hence

"

5(3

%1 - 8280 T 2 (La%p t 800,

i (9.7.56)
Ble18p * So%) = - 2(&18) - §58,0% -
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Therefore, since

(s, a;] = 2134 , [s, a;;) = -21iap, (9-7.57)
where
s = 2 (a;Ta+ - a;Ta_) , (9.7.58)
it follows that the spin operator must be given by
g =sg ; ~ (9.7.59)

for it acts as the generator of infinitesimal rotations according to the

fundamental law for angular momentum:

[0_3 , Efree(k)] i5 Efree(k} ,
nhy
(9+760)

o, , i}free(k)] 18 BT%(k)

el

E57C(1) and H''°%(k) being the total Fourier amplitudes of the gravitational
e o
field. Since gravitational waves are purely transverse it is possible to

generate rotations only about the vector e,, and hence the spin is restricted

aaf

to be parallel or antiparallel to SB

identifies the gravitational field as a spin-2 field.

. The factor 2 in Eg. ©.7.58)

The amplitudes a 12 etc. may be used to define a "total" energy

1 %1
and momentum for the linearized free grevitational field:

_ .0
. =fk (affa; + apfa;) di}ﬁ, ’ ©.7.61)

F Eff»(aITaI +arfar) x . ©.7.62)

N
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It is to be emphasized, however, that the validity of these definitions is

strictly limited to states in which the field is evervhere weak inside a
macroscopically flat region of interest and effectively vanishes for a
considerable distance outside. Furthermore, although the definitions are

then applicable to the total energy and momentum inside the region in

question [by imposing periodic boundary conditions on the region and replacing
the integrals in (9.7.61) and (9.7.62) by sums] it is on the other hand,
impossible to introduce the concept of a }gggi distribution of energy and
momentum which is group-invariant. For, although the amplitudes aI,

, ete. are Fourier transforms of the group-invariants Efree and

LY

f11
Efree, and hence permit H &and P to be re-expressed as integrals over
[ LY

all space, nevertheless, because of the necessity of inverting the factor
k° which appears in the integrands of expressions (9.7.45) and (9.7.4), the
integrands of the spatial integrals---which would normally be identified as
the energy and momentum densities respectively---cannot be expressed in
tegms of the local geometry of space-time but become non-local functionals
of Efree and Hfree.
o wr

The only strictly local quentities presently known which satisfy a
field-equation-dependent differential conservation law analogous to the
laws of conservation of energy and momentum in Lorentz invariant theories
are the components of a fourth rank tensor discovered by Bel (1959) and
Robinson (1959). Since the conservation law which it satisfies is completely
covariant and independent of the weak-field approximation this tensor is of
undoubted importance, although its physical significance is not yet well

understood in concrete terms.
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(9.8) Measurability of the gravitational field.

Tt has been emphasized by Bohr and Rosenfeld (1933) that the classical
description of a field in terms of components (in our case, Eab and Hab)
at each space~time point bécomes, in the quantum theory, an idealization
having only & formal applicability. Since the commutators of the quantized
field components involve singular functions (e.g., D(x - x') and its
derivatives), unambiguous statements can be deduced from the formalism only
for averages of the field components over finite space-time regioms. Our
first problem will be to find suitable devices for measuring such field
averages and to examine the kinds of averages to which these devices lead.

We begin with the description of a convenient way to measure
(conceptually) an average of the component Ell’ noting that the same
measurcment repeated in a sufficient mumber of differently oriented quasi-
Cartesian coordinate systems---that is to say, with the measurement device
itself placed in different orientations---suffices for the determination of

similar averages of all the components E

op° Tous, if the measurement is

performed in a coordinate system of which the x'-~axis has direction cosines
al, a2’ 05 with respect to the original system, then an average is cbtained
for the quantity OEQbEab in the original system. It is easy to see that
averages of all the Eab in the original system may thereby be inferred by
making six appropriate different choices of the aa.27
For the measurement of a space-time average of Ell we must insert
some kind of a “test body" into the field. The simplest body which we cen
use for this purpose is the elastic medium itself, which, together with its

clocks, was introduced originally for the purpose of defining a local

coordinate system. The spatial boundaries of the medium may be taken to
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coincide with those of the averaging domain, since the coordinate system is
needed only there and nowhere else. The quasi-rigidity of the medium,
together with the weak-field situation, which must be assumed, insures that
the coordinate system remains permanently qpasi-Minkowskian.28 For simplicity
the spatial volume occupied by the medium will be taken as a guasi-cube
having sides of unstrained length 1L oriented along the coordinate exes.
At a certaein instant~~-marking the temporal beginning of the space~time
averaging domain--~the internal constitution of the medium is abruptly and
simultaneocusly ( as determined by the clocks) altered throughout, in such
& way that a siumple application of Eg. (9.7.1l) cen then be made to obtain a
determination of the average walue of Ell over the medium and over the
length of time during which the medium retains its altered constitution.
The nature of the most suitable alteration will now be examined.

We first consider an alteration which is physically inadmissible, but
which will nevertheless lead us to a correct analysis. We imagine that the

elastic moduli ¢ suddenly become modified in such a way that the

abcd
medium no longer supports short wavelength oscillations but becomes what

we may call strain.rigid---that is, the only internal motion which it can
execute is & uniform strain in the x;-direction, which is itself unhindered
by elastic restoring forces. This situation is somewhat picturesquely
illustrated by the device shown in Fig. (9-3). 1Its physical inadmissability
resides, of course, in the fact that because of the finite propagation
speed of all forces a body can no more be strain-rigid than it can be

truly rigid. Leaving aside this defect for the moment, however, let us see

how such a hypothethical device might be used. Let us assume that the

intrinsic coordinate system defined by the test body has been adjusted so
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A strain-rigid test body.
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that at the initial instant &y, is equal to unity, to an accuracy limited

only by the zero point oscillations. Lengths in the xl-direction are thus
read off directly from the coordinate xl at this instant. At subsequent
instants the component particles of the test body will have suffered dis-
9

Pplacements bz given by
Bz = 5a s xl (9 . 8 o1 )
?

where 8)1 is the diagonal component of the (now uniform) strain temsor in
th'a\:xl-direction and where the origin of coordinates is chosen at the center

of the bodys Assuming uniform mass density Py Ve have, from Eq.(9.7.11),

-1
517 = E13 - P t1asa1 9 (9.8.2)

which expresses the temporal behavior of the strain resulting from the.

action of the space-time curvature and the internal stresses. We do not,

of course, know in detail what. the internal stresses are. But we know that
they must adjust themselves in such a way that the body as & whole under-
goes strain-rigid motion.l The forceg involved are evidently forces of
constraint which can do no net work in a virtual displacement. This condition

may be expressed in the form

= ay 3. _ 153

0 = ftab,bB(ﬁz )dg{N— (lel) tlb,bx d«’fu’ (9.8.3)
v v

where V(=L5 ) denotes the volume occupied by the test body. From this it

follows, through an integration by parts, that

101 .,,1 1 ~ 1 3 ~
Jot +3uG-ad v,, P o= 2 [, Px = o, (9.8.1)
A v

and hence
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5, = E , (9.8.5)

By

S5 [t +indn -t 3 .
= 6L j(x +2L)(2L-x)Elldi<’.V (9.8.6)
v

The quantity which the strain-rigid test body measures is therefore seen to

be a weighted average of the field component Ell over the volume occupied

by the test body. The weighting factor (xl + % L)(% L - xl) is parasbolic,

going to zero at the extremities of the body in the xl-direction.

To test the formalism of the quantum theory of geometry by means of
measurements we nust assume that the apparatus (in this case the test body)
obeys the Uncertainty Principle. Poisson brackets for a strain-rigid test
body can be obtained by the general Green's-function techniques outlined in
the early sections of this chapter. Conventional methods, however, suffice

for this simple example. Since the internal forces are pure constraints the

1 a2 3 o 1 o @e .2 (9.8.7)
| L = 2jp0(sz ) d,\’jv i 'éﬂm (511) -
. v h
M 1is the total mass of the test body. The variable conjugate to the strain,

which we may call the strain momentum, is given by

wo= /¥y, = pzMLEB, . (9.8.8)

The accuracy of & simultaneous fixing of B q and n is limited by the

uncertainty relation

A o~ 1 . (9.8.9)

: Asll

A measurcment of g5 at the beginiing and end of a time interval T ylelds

a space-time average of E "

11° Denoting the measured values by =n' and =
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respectively, we havel !’

, e ‘1 B
- x' = %-—2- MLafsll dxo = 13 MLeTﬁll 5 (9.8.10)
T
- w1 [ = o _ -5 =1/ ,1 1 1 1 L
ﬁn = T jElldx = 6L°T j (x +§L)(§L-x)Elldx. (9.8.11)
T VT

Equation (9.8.10)- may be solved to express ﬁll in texms of the "experi-
wental data" x' and n" . The limitation which the uncertainty relation

(9.8.9) imposes on the accuracy of this measurement is evidently given by

3 B l 3 .
oBy - (9-8.12)
MLT 8844
which, for every value of 4s,, no matter how small, can be made arbitrarily
small by the choice of a sufficiently large value of M . On the other

hand, M is limited by the weak-field condition
ML, (9.8.13)

and here we encounter & situation which has no analog in the measurement
problem of electrodynamics which Bohr and Rosenfeld considered. It turns out,
as a result of the complete analysis of the sources of uncertainty in the
measurement of ﬁll which are present in addition to that expressed by
(9.8.12), that this situation has a more fundamental significance thah
the mere breakdown of an approximation method. We now examine these
additional sources of uncertainty.

To begin with it is necessary to point out that the boundary of the
space-time averaging domain is not defined with infinite precision by the
experimental arrangement. In addition to the zero point oscillations

there are two sources of uncertainty in this boundary: (1) an uncertainty
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in the range of the time interval T due to the fact that the measurements
of the strain momenta x' and x" actually occupy finite time intervals

At;  (2) an uncertainty in the spatial boundaries due to the strain suffered
by the test body during the measurement process. As for the uncertainty in

time it is clear that we must assunme

At < T , (9.8.14)

if Eq. (9.8.10) is to be at all usable. On the otker hand, it must be
borne in mind that if At 1s taken too small, the uncertainty in the total
mass of the clocks will 'hecome great emough to violate the weak-field
condition on which Eq. ( 9.8.10 is based. It will turn out that these
conflicting requirements can be balanced only if a fundamental limitation
is imposed on the size of allowable measurement domains.

The uncertainty in the spatial boundaries will remain within tolerable
limits only if 811 remains small compared to unity throughout the interval

T . From Eq. (9.8.5) this is seel to impose the requirement

2
E,,T° < 1 . (9.8.15)

Following Bohr and Rosenfeld it will be comvenient to confine our attention

to the case
T < L , (9:8.16)

vwhich permits an approximate approach to a limiting situation analogous to
non-relativistic particle mechanics, in which a strict temporal erder can
be assigned to measurement sequences. Equation (9.8.1‘5) then becomes

simply a specilal case of the general weak field condition
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RLZ << 1, (9.8.17)

where R denotes the magnitude of a typical component of the Riemann tensor.

In the electromagnetic measurement problem Bohr and Rosenfeld kept the gpatial

boundary within tolerable limits by choosing the mass of the test body sufficiently

large. In the present problem the same result is achieved by the weak field
condition, whereas the mass now plesys the role previously played by the charge.
This is, of course, quite reasongble in view of the physical significance of
mass in the theory of gravitation. It will become evident, furthermore, that
the lack of a freely adjustable charge-to-mass ratio, which has sometimes been
predicted as an obstable to the measurebility analysis for gravitational fields
(see, e.g., Rosenfeld, 1957), in fact poses no obstacle other than a limitation
on the smallness of allowatle measurement domains.

The megnitude of the errors introduced by the imprecision of the
boundaries of the space-time averaging domain is proportional to the absolute
magnitude Qf EJJ. itself, and can surpass all limits as E:Ll becomes arbitra-
rily large. As Bohr and Rosenfeld have empmphasized, however, this circumstance
corresponds only to the general limitation on all physicsl measurements, whereby
a knowledge of the order of magnitude of the effect to be expected is always
necessary for the choice of appropriate measuring instruments. In the measur-
abllity problem we are interested in fields which are so weak as to place us
clearly in the guantum domaln. Such fields are those for which fluctuation
phenomena become significent. The strength of the fluctuations involved in
a given measurement is effectively determined by the magnitude of the commutator
taken between a typlcal pair of field quantities similar to the field quantity

being measure. A typical situation,
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and the cne which must be studied in carrying out the complete analysis of
the measurability problem, involves the measurement of two field components
averaged respectively over two overlapping space-time domains. Here the
test bodies themselves must be assumed to interpenetrate one another without
interaction, although prior to their respective time intervals T they should
be bound firmly together so that they have no relative velocity at the
beginning of the measurement. A local quasi-Cartesian coordinate system
may be introduced which embraces both bodies at once, or else, according

to convenience, two such systems may be introduced, each centered on one of
the bodies and oriented parallel to its edges, the two bodies being assumed
to be quasi-cubes of comparable volume. The bodies will be distinguished by

the labels I and II . If the direction cosines of the xl-axes of the

two bodies with respect to the commom coordinate system are aaI and aaH
respectively, then the commutator of the field averages measured by the
two bodies over their respective time intervals is given by
[f:I , o fd xfdhx' Q, ef.b Io Ho',dnw I(x) WE (x )
T .T T .
x (5 ac5 bva * % aa®pe = ® ab? cd)v D(x - x'). (9-8.18)

Here the subscripts 11 have been dropped on the E

I II
WE and WE

Eu for the two bodies respectively have been introduced. In & coordinate

, and weight functions

appropriate to the measurement of the field components

system centered on one of the test bodies and oriented with it, the weight

function is given by

2)

Wo(x) 6 Lo (xt + }‘e L)(— L - et + s L)e(— L - x")e(x® + L)e(--L - X
X e(x3 +3 L)e(— x3)e(x°)e(T - ) F (9-8-19)
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9 denoting; as usual, the step function, and the origin of time being taken
at the beginning of the measurement interval.

By introducing the explicit form (9.7.h5) of the transverse-field projeéétton
operator, performing a number of integrations by parts, making use of the
wave equation (9+744) satisfied by D(x - x!), and finally splitting D(x - x*)
into its advanced and retarded parts while taking note of the reciprocity
relations satisfied by these parts, it is not hard to show that Eq.(9.8.18)

may be rewritten in the form

(EL, £1) 1 (AT I o Aty (9+8.20)

where

ADTE o fabe fater T 07 oetn) ot T T TR0, g

-5 .8 )Wt b w.l I

ab®2a Vg ,0000(%) = ¥ BacWr ,pa00(*) * Bap¥y ,cdoo(x)

I I
* 8" s ap0ol®) * Y5 ,apea(®) 1 - (9.8.21)

The verification of the uncertainty relation

AFL AETT . (Al I L AILT) (9.8.22)
which follows from Eg. (9+8:20) will be the main task of this section.

I,II _ ,IL,I

The magnitued of the quantity |A | in the oase of partial

overlap of the space-time regions VITI and VIITII may be estimated by
inserting the Fourier decomposition (957:50) of the propagation function
into (9;8.18) and performing the space-time integrals first and the momentum
integration last. Assuming LI ~ LII ~ L and TI ~ TII ~ T one obtains,
for the square root of this estimate, the critical field strength
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L2 when L ~T
crit * 5 (9.8.)

when L >>T /

below which quantum phenomena become important. The value

R -1 being always the smaller of the two given in (9.8.25), we shall

crit
be safe in using it in all cases. The criterion of accuracy for testing the

formalism in the quantum domain is then

AE~2 AL~ (9.8.24)

Repit =

where
A< 1 (9.8.25)

for all sources of uacertainty Aill .

The critical field strength R represents the magnitude of the

crit
guentum fluctuations. These fluctuations must themselves satisfy the weak-
field condition (9.8.17) if the experimental arrangement is to have any

utility. From this it follows that we must have
L>>1. (9.8.26)

A still more stringent limitation is, in fact, required if complete consistency
between formalism and measurement is to be achieved. For, returning to

Eq. (9.8.12) and taking note of the necessary restriction

881y <1, (9.8.27)

we see that the mass of the test body must satisfy

1 1 L
M ~ 12T ——— =>>>1 . (9.8.28)
A Bsy T

- o2
‘1o AE 08,
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if an accuracy is to be attained sufficient to test the formalism in the

quantum domain. From conditior. (9.8.15) it therefore follows that
L>>>>1 . (9+8.29)

We note that if experimentally known elemeantary particles (masses between
10"22 and 10'18 } are used in the construction of the test body, condition
(9.8.28) implies that a very large number will be needed. This, of course,
f£its well with the representation of the test body as a continuous medium,
Furthermore, it underscores, &s in the case of electrodynamics, the
inappropriateness of attempts to use individual point particles as test
bodies in maeking accurate field measurements (Landau and Peierls, 1931;
Anderson, 1954; Salecker, 1957). Indeed, it is only by using extended test
bodies that uncertainties due to the forces of radiation reaction may be
ignored: 1In the present example these uncertainties arise from uncertainties

ir the stress-energy density of amount
AT ~ MLps (9.8:30)
11

[see also Egs. (9.8.59), (9.8.60) and (9.8.63) ] which themselves arise from
the process of measuring the initial and final values, n* and " , of

the strain momentum during the time intervals At » During such time intervals
the uncertainiy (9+8.30) gives rise to an uncertainty in the Riemann tensor
of comparable magnitude, which in turn produces an additional uncertainty in

x' epd 7" beyond that determined by the uncertainty relation (9.8.9),

namely
B ~ %—2 MLZ At AT ~ ;_L—e MLl At as); - (9.8.31)
137




This additional uncertainty may-be neglected in comparison with An by

choosing At so small that

1l .2 -1

1> 8xf/an ~ g3 ML At(Asll)2

~ 12 L-2p~2 At(A'ﬁll)'a ~ 12

Ty
.l

1
= . (9.8.32)
28 >

We have already pointed out, however, that At must not be chosen so small
that the mass M violates the weak-field condition (9.8.13). It is casy
to see that this caution again leads to the limitation (9.8.29) on the
smallness of allowable measurement domains.

Before proceeding to the verification of the uncertainty relation
(9.8.22) it is still necessary to investigate the physical means by which
the strain momentum is measured and the sources of error to which the pro-
cedures involved unavoidably give rise. in order to do this it will first of
all be necessary to drop the untenable original assumption of strain-rigidity
for the test body. It is apparent from the foregoing discussion that it is
only thg degree of uncontrollability Asll in the strain which need be
uniform., This, however, can be arranged by a prescription for the measurement
process which does no violence to the relativity principle. At the beginning
of the interval T, instead of adjusting the elastic moduli so as to insure
strain-rigidity we simply let them all fall abruptly to zerc. One may
imagine this change to be brought about by & loosening of the coupling
between the consituent particles, which trarsforms the medium into an
ensemble of free particles. Because of the retardation of forces the actual
decoupling process must occupy an interval of time at least as big as the
interparticle spacing g4 . If the original elastic moduli are chosen big

enough to make the sound velocities approach the velocity of light this time
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interval will be of the order of the period of the short wavelength (~2)
oscillations of the constituent particles. The time intervals At <for the
subsequent measurements of the strain momentum may also be taken of comparable
magnitude.

The zero point coupling energy, which was shown in Section 5 to be small
compared to the total mass, does not, of course, simply disappcar, but must
be accounted for. It may be imagined as temporarily stored within the
constituent particles themselves. However, it is not necessary to be precise
about the mechanism for accomplishing this. The lack of a detail prescription
in this regard is not to be understood as implying any fundamental uncertainty
in the Riemann tensor arising from this source. It 1s enough to know that
such a prescription is in principle possible.

The measurement of the strain momentum is most easily carried out by a
simple generalization of the Doppler shift technique employed by Bohr and
Rosenfeld. At a given moment prior to the interval T a light source which
is located within a relatively small region at the center of the test body,
and which may itself be regarded as a component of the test body, emits a
bundle of electromagnetic radiation of duration no greater than At. By
means of suitably placed mirrors portions of this radiation are progressively
delayed-~~for example, by temporary trapping in a central slab at right
angles to the x:L axis---s0 that the radiation bundle becomes an "extended
projectile" which strikes all portions of the test body at the same instant
immediately after the coupling between the constituent particles is removed.
The state of the radiation bundle just prior to impact with the test body
may be described in terms of photon density, which is arranged so as to be

proportional to the magnitude of the coordinate xl and independent of
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x2 and x3 s With the photons themselves propagating parsllel to the xl
axis, in the positive direction for positive values of xl and in the
negative direction for negative values of xl. By means of mirrors
attached to the constituent particles of the test body the radiation bundle,
as a result of the impect, is reflected back to the central source where it
is analyzed spectroscopically for a determination of the Doppler shift.
Although the radiation bundle is here described in terms of photons it is
to be emphasized that these photons are emitted coherently, and there is
never any question of measuring the momenta (relative to the central plane)
of the constituent particles individually. Only the total strain momentum
is measured, for only then cen the minimum uncertainties expressed by
(9.8.9) be achieved. Under these circumstances the uncertainty AE 1in the

total energy of the radiation bundle will satisfy the relation
AE AL ~ 1 . (9.8.33]

The coherence of the emission process furthermore implies that the quantity
AE also represents the uncertainty in the total mess of the clocks which
are needed to time the emission process. In fact, the emission process may
be regarded as a transfer of energy from the clocks to the radiation field.
Similarly the subsequent removal of the interparticle coupling may be
regarded as a coherent transfer of energy from the coupling mechanisms to
the clocks, having & comparable uncertainty in total magnitude.

Since the strain is no longer required to be uniform during the intexval
T the definition (9.8.8) of the strain momentum must be modified. The

appropriate generalization is simply
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(9+8.34)

where the summation is extended over the constituent particles of the test

body, xl,r and Py being the xl-components of position and momentum of the

T th particle respectively. It is easy to see that this definition reduces
1 . .

to (9-8-8) when the strain is uniform, with Py, =1 X 8y To see, further-

more, that Eq. (9.8.10) retains its validity it is only necessary to note

that we now have s

1= le,l and that Eq.(9.8.2) is replaced by

52),, = Eyp - (9.8.35)

-5 1.1 1 1y oo )
6L f(x +-§L)(-§L-x)szl,ld&<”
Vv o

_5 1 e 5
12 L fx&zldg,,
v

-1 [= 0 -1 -2 -1 1,00 w o A3
T jElldx = 12 ML ﬁox(Szl -8k 1) &x,
T \

-]l =2 =1 1 n 3
12 M tL"Ap Z x (p)." - P.")

T

= 1p M'lL'zI"l(n" - x*)e (9-8.37)

In order to verify that the prescribed radiation bundle actually measures
the strain momentum (9.8.34) it is necessary to compute the exchange of energy
and momentum between photons and particles. We assume that all the photons
have as nearly as possible the samc angular frequency wy

frequencies o' will generally differ from w, by amounts of order AE

Their actual
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satisfying coddition (9. 8-55) Because of their coherence the uncertainty

as has already been mentioned,also
in their total energy will, A be equal to AE . in the discussion which

immediately follows we use the prime and double prime to denote respectively

"pefore" and "after" the collision between the particles and photons.

positive values of xlT we have

Piy =P, = Z(w' + a")
n
T
1 -1 l|2 ]2 '] 1"
Em (plT -plT ) = Z((D - (D),
n
T

For

(9.8.38)

(9.8.39)

where n_ is the number of photons striking the T th particle and where

the velocities imparted to the particles are assumed to be nonrelativistic.

The latter assumption will be valid provided

nwy<< m ,

(9.8. 40)

vhich requires that the total photon energy shall remain small compared to

the rest energy of the test body. From Egs. (9.8.38) and (9.8.39) one

E (0 - ")
1
t = o= t "
P, =m 2%(&) + "),

Z(a)'+a))

e

ovtains

(9.8.141)

and for negative values of xl_r the same expression is obtained with the

opposite sign. The condition (9.8.40) insures that the mean frequency

®o

of the radiation bundle will be large compered to the Doppler shifts o' - «".
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If it is also taken large compared to the frequency spread AE Ve may

write, to good approximation,

Pl-r' = %m (n_rwo)'lz (0t = ") - n.w) , (xl,r > 0) (9.8.42)
n
e

and hence

o Z% » (n-rwo)-llxl'rl.z (! - o) -z le'l'ln'rwo‘ (9-8.13)
T n_ T

Since n_ is assumed to ‘:;e proportional to le_rl the first term of
Eq. (9.8.43) is simply proportional to Zy (w* - @"), and hence the
mean total Doppler shift, which may be detex-:l?xIned immediately from the
spectral asnalysis of the reflected radiation bundle, gives a direct measure
of the strain momentum.
| The factor of proportionality between n_ and |xl_r| is readily
obtained from the observation that as a result of the collisions with the
photons the constituent perticles of the test body will, during the colli-
sion time At, undergo uncontrollablec displacements in addition to the
displacements which they would undergo in the absence of the measurement,

of order

arg . = wt (e - pt) ot (9.8.4%)

1 ;
Imposing the uniform strain requirement Azl r = X 'rAsll and teking note

of Eq. (9.8.38), we therefore infer

i

-1 1
n, = Zmay (asy,/0t) |x L <<mLas,. (9.8.45)

T

From Eqe. (9.8.’4-3) it then follows that the uncertainty in the strain momen-

tum measurement is given‘ by
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ax = (At/8s,,) AZ Z (o' - o). (9+8. 46)

T n
T

Since the energy of the final radiation bundle is measured with arbitrary
precision in the spectral analysis, the uncertainty in the mean total Doppler

shift is due entirely to the initial energy uncertainty:
AE 2(“" - ") = AR (9.8 47)
T 1
T

Equation (9.8.U46) together with the uncertainty relation (9.8.3%) therefore
leads again to (9.8.9), showing that the conjugate relaticnship between 511
and g5 is maintained even though the test body is no longer strain-rigid.
We may note that the condition ay >> AE togéther with (9.8.40) further
reinforces the limitation (9»8.29) on the smallness of allowable measurement

domains. We have

L >> M >>Ln7mo >> At'lZn.r . (9.8.148)
T T

On the other hand, we must evidently have

ZnT >> 1, (9.8.49)

T

which together with (9.8.32) leads to

L >>>

Hit

1
% (122%)2 >> 1 . (9.8.50)
T

Under restrictions of such stringency the composition of the radiation bundle
can easily be arranged so that the condition (9.8.49) is compatible with

(9.8.45), which, in combination with (9.8.12) end (9.8.24) yields
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Zn_r << MLAsll ~ 12
T

L
'T- L L] (9.8.51)

b L

Before completing the detailed description of the measurement process let
us enumerate the sources of uncertainty in the field measurement which remain
to be discussed. These are: (1) the disturbance in the field produced by the
uncontrollable component of the stress-energy density resulting from the
strain uncertainty Asll associated with the measurement of n'; (2) the
disturbance produced by the radiation bundle; (3) the boundary uncertainties
arising from thc zero point oscillations of the test body; (%) the disturbances
produced by compensation mechanisms which will presently be introduced. Of
these we shall show that only the first is significant under the limitations
which have already been imposed on the structure and dimensions of the test
body and the parameters of the measuremente.

As far as the radiation bundle is concerned the only uncertainty which its_
emission produces in the gravitational field is that due to the uncertainty
AF in the energy transferred to it from the group of clocks constituting the
radiation source at the center of the test body. The ma.____in effect which the
emission of the radiation bundle has on the gravitational field can be com-
puted in advance---and hence allowed for---from a detailed knowledge (avail-
able in principle) of the structure of the radiation source and the arrangement
of the various mirrors. This point is important since the same argument also
applies to thc test body itself. As has been pointed out by Heltler (195 L) it

is only the uncontrollable motion of the test body which gives rise to an
uncertainty in the field. In the present case this motion produccs a quad-
rupole change in the stress-cnergy tensor, of megnitude given by (9.8.30).
The monopole field of the test body, on the other hand, is already known, and

does not need to be compensated for-~-by introducing, for example, charges
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of opposite sign as Bohr and Rosenfeld did for the measurement of the elec-

tromagnetic field. This is fortunate in the present case, since negative

masses do not exist. 50
The uncertainty in the energy exchange between radiation source and

radiation bundle gives rise to an uncertainty in the stress-energy density of

order
8T = L AE, (9-8.52)

vhich is also the same as the order of the uncertainty involved in the energy
exchange between the interparticle coupling mechanisms end the clocks, which
takes place when the elastic moduli are altered. The ratio of the uncertain-

ties (9.8.52) and (9.8.30) may be cxpressed in the forms

1 MBy 1. -1 T 1
= LeT o=~ Tp M = > F

AE

e (9-8.53)
MAsll

=1k

o
AT

the final inequaelity following from (9+8.32). It is secn that the uncertainty

8T may be neglected im comparison with AT provided

T >>> 2"t >> 1. (9-8.54)

This is the first instance in which we have encountered an absolute limitation
on T . We note, whoever, that such a limitation wes already implied by the

conditions (9.8:13), (9-8.27) anda (9-8-28):

>>> 1 . (9-8.55)

=

1
T >> TASll ~ 12 X

The zero-point oscillations of the test body are, for measurement
theoretical purposes, the seme as those computed nonrelativistically in

Section 5. This follows at once from a consideration of the relative

1L6
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magnitudes of the elements of the lower right hand corner of the wave-operator

matrix appearing in Eq. (9.-6.29). 1In view of the conditions (9.8.13) and

(9.8.29) the mass density of the test body is extremely small compared to
. e‘l g"

unity,. and therefore F, .u , Fy " FQBGH are negligible compared to

e"i,’" t€ + t +
P . The Green's functions G™" i 5 G €“§"7 s G "Ly 15 are

consequently negligible compared to Gt€"7i, the spatial components of which
are well approximated by Eq. (9-5.48) Thus, although the vacuum fluctuations
of the gravitational field in principle contribute to the zero-point oscil-
lations of the test body, in practice they may be neglected.5l Condition
(9+5+59) may therefore be invoked directly to show that the imprecision of

the boundary of the test body due to the initial position uncertainties of

its component particles is completely negligible. The only question which
remains concerns the diffusion of this boundary in time due to the statistical
aistribution of zero-point velocities which exists just prior to the decoupling
of the particles. The magnitude of this diffusion is determined by the
average value of the product VaVa in the ground state. Making use of

Eq. (9-6-69) and neglecting all the propagation functions except Gab' » We

have, repeating the arguments which led up to Eq. (9-5.53),

lim

¢ - (+) , .
\vava> =xlox 10 aat;(0)(0') ° (9.8.56)
Introducing the Fourier decomposition (9-5-“8) and the phenomenological
cut-off (9:5.56), we then find
N ) 9.8.57)
VoVa/ = E(2°t+°z . (9.8.

In view of the conditions (9:5.60), (9:5.61) and (9.8.15) it therefore follows

that
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1
2
(vov’ T < L, (9.8.58)

which shows that the boundary diffusion may also be neglected.

The motion imparted to the test body in the photon-particle collision
process cannot, however, be similarly ignored. It must, in fact, be cancelled.
This is accomplished by a procedure due to Bohr and Rosenfeld. Immediately
after the time interval &t , during which the initial strain momentum xn*
is measured, we give each particle an impulse which is precisely opposite to
the impulse it received from the radiation bundle, whereby the particle is

again brought to "rest," to the same degree of accuracy as previously per-

mitted by the zero point oscillations. In the present case this is conveniently

accomplished by having each particle emit a burst of photons in an appropriate
direction. The same process W3y also be used during the time interval At
in the transverse slab used for the entrapment and delay of the original
photons, in order to prevent uncontrollable displacements from occurxing in
this region. The stress-energy density of the additional photons---and hence
their gravitational effect---can, like that of the original radiation bundle,
be taken into account to the accuracy 8T given by Eq. (9.8.52).

At the end of the time interval T the same strain-momentum measurement
process must be repeated, to obtain a value for n". Immediately following
this measurement, however, the interparticle coupling forces are restored and

32

the test body resumes its previous dimensions. The uncontrollable part of
the stress-energy density therefore vanishes prior to the time interval T
while inside of this interval it is equal to that produced by a constant
uniform strain Asll . After the interval T a memory of the strain Asll
is left in the contribution which it makes to the vibrational encrgy upon

restoration of the elastic forces. This contribution is, however, of order
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(Asll)a and is easily seen to e negligihle.33 The (O0)1 and 11 components of
he upcertainty in the strain tensor are therefore expressible, to good accuracy,

in the forms

Ao)0) = =P o(x" + %L) 6z L - <)

1l 1 1l 1 1
+§pOI.Asll [8(x +-§L) +8(§L - x )]}

X e(x2+ ]—2'L)e(]§'L - x2)e(x3 + ]—éL)e(%L - x3)e(xo)e(T - xo), (9.8.59)

o = “(o)
2 = poAsnxle(xl + %L)e(%L - Me(x® + ]—2'L)6(J—2' - x°)
x o(x3 + % L)e(]—éL - ) BP) - 8(T - x0) 1, (9.8.60)

the use of delta functions to represent effects at the boundery of the space-
time averaging domain being permitted vecause of the smallness of Asll and At.
The first term inside the curly bracket 1in Eq. (9u8u59) represents the effect
of the chenge in mass dnesity due to the expansion ABll while the second term
represents the additional surface layer of mass on the ends of the test body pro+
duced by this expansion. Egqmation (9.8.€0) describes the momentum density
acsociated with the sudden changes in the strein at the beginning and end of

the interval T. It is readily verified that

AT(o)('O),‘o * AT(o)l,l = 0, (9.8.61)

inconformity with the eequirement that the uncertainty in the stress-energy
density must be independently conserved. This requirement, in fact, leads us

to infer, from the conservation law
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0) 1
amy{ ),o:s t AT, =0, (9-8.62)
the existence of a momentum flux component
LTy, = laprAsu(xl + %L)(-lél- - Fo(xt + %)e(%L - xHe(x? + %L)e(%L - x°)
x 6(x> + %L)e(%L - ) B P) + 8T - O)Y (9.8.63)

describing the uncertainty in the exchange of momentum between the test body
and the two radiation bundles. It will be noted that the above conserwation
laws may be immediately obtained from the compact and (as it turns out) very

importaent representations

1

&o)0) = Iz ML 8831 ¥g,m1 2
1

Ayl = 13 MLET 88)) Vi, , (9.8.64)
1

oT) ) - ML2T 8811 Vg 00 s

where wE is the weight function (9.8.19). All the other components of

ATLW vanish. In an arbitrary quasi~Cartesian coordinate system we have

1

&o)0) = Iz MLET 08 8a % "Erab ¢ O
1

Moy o = Tz MTOS O 0 Voo (9.8.65)
1

oT = Mo a o Vo,

where the aa are the direction cosines of the xl-a.xis fixed in the test
body and the subscripts on the strein uncertainty have been dropped.
The gravitational effect of the uncontrollable component of the stress-

energy density will be examined in the case of the measurement of a
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single field average EX . Due to the self-actions of the test body

EqQ.(9.8.10) must now be replaced by

M- Kp = 12 MLy

2p (EI + BTy, (9.8.66)

Here EI'I represents the gravitational field due to the entire test-body-
photon complex averaged over the space-time domein defined by the test body
itself. If this were completely controllable it could be computed in advance

and used in the equation

Bl =« oMt 21,

Ml Ml N "o ngt) - BN (9.8.67)

I

I

to express the field average E which would exist in the absence of the

test body in terms of the experimental data «n' and x" . As it is, however,

the uncertainty in the stress-epergy density gives rise to an uncertainty

AEab ab

replaced by AEab and Aﬂhv respectively. Solving this equation with the

in the field,which satisfies equation (907.27) with E and ﬁxv

aid of the retarded Greent's function D’(x - x!') and making use of Egs.

(9:8.65) we easily find

AEL T lTe M L7 TIAI’IASI . (9.8.68)

where AI’I is the quantity defined by EQ.(9.8.21), taken with the two space-

time domeins identical. Making use of the uncertainty relation (9.8.9) we

may therefore write the total uncertainty in the measurement of ﬁI in the

. form

=1 12

LlarIAsI

+ 12 MILIETIIA |ast . (9.8.69)
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Upon minimization with respect to AsI this reduces to

ot ~ |AI’I| , : (9.8.70)

which is a special case of Eg. (9.2.30) of Part I.

As was pointed out in Section 2 the measurement of any single observable
should be performable with unlimited accuracy, and a method was indicated for
accomplishing this by introducing a compensation mechanism. In the present
case it is convenient to choose & compensation mechanism which is a generali-
zation of the system of mechanical springs introduced by Bohr and Rosenfeld.

Instead of allowing the elastic moduli to fall completely to zero during the

time interval 'I‘I we hold the component ©1111 at the value
1,2 -1, ,.1 1 11,11
1111 35 Mp Ly Tp(x + 3 L)Ly -3 XA . (9.8.71)

We note that this value is completely determined by the parameters of the
meesurement and is therefore known in advance. With nonvanishing €111 the
uncontrollable strain AsI will give rise to mdchanical forces causing
additional displacement Acﬁzl of the constituent particles of the test body,

which are determined by the equation

s -1, _ -1 I
AB%1,1 = =P Bty gy = Pg (eg31388T),
. .1 1.2 -1, ,I,I,]I
= - I3Py MTL;T T AT asT . (9.8.7.2)

These displacements make the following contribution to the strain momentum

during the time interval TI:

Bomy fpox (Ac821 = A<:azl Ja X

Vi
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1 1

1.1 . 4
= Efpo(" +Z LG Ly - x') Az, d'x
ViTy
= - %5 My LI2 % ABLT | (9+8.73)

The uncertainty relations following from Eq. (9+8.66) should therefore be

modified to read

2 I, =11
M L TI(AE + 8B 7) + By

ol

AnI"

= 1 2 1 .8.
= WL T, &, (9-8.74)

which i1s equivalent to (9.8.12), showing that the effects produced by the
uncontrollable strain AsI have now been cancelled.

It 1s still necessary to show that although the elastic modulus
(9-8-71) produces a significant effect on the strain momentum, its effect on
the strain itself during the interval TI is negligible. This will be the
case if the period of oscillation of the strain produced by this modulus 1s

long compared to TI' From Eq. (9.8.72) vwe see that this period is gilven by

5 1
1 -1 2. -1 I,I,, 2
T, = (pPo M Ly Tp |2777]) . ©:8-75)
Remembering that |AI’I| ~ (Rcrit)2 and making use of (9.8.13) end (9.8.23),
we have
1
T L L. 2 ’
c .~ I I
T T, Qe ﬁ;) > 1, (9.8.76)

vhich establishes the utility of the compensation mechanism.3 4

°  We come finally to the verification of the uncertainty relation (9.5.22)

for the measurement of two field averages EI and En. Equation (9.8.66)

153




must be replaced by the pair of equations

. or ..-\
“I" - “]’_' = i_é MILIa‘EI(EI + EI:I + EII:I) : ,?
1 II , pILII | gI,II J fg=6-0)
t 2 =ls
S S ¢ S v Mpplyp T (B + B *ETT),

where the notation is obvious. Here the mutual uncertainties in the measure-
ments cannot be completely cancelled. As has been pointed out in Section 2,
the greatest possible mutual accuracy requires the use not only of compensation
mechanisms but also of a correlation mechanism. We consider first the case

in which the space-time domains VITI and VIITII overlap. The appropriate

compensations and correlations are in this case achieved by introducing non-
vanishking elastic moduli ©111 in the two test bodies during the respective

time intervals T, and T and bringing into action, during the interval

I

of overlap of TI and TII >

component particles of the two bodies in the region of spatial overlap.

11’
a set of mechanical springs linking adJjacent

Except in the case in which the xl-axes of the two bodies are parallel the
linkage between the bodies should not be direct; in the general case the
elastic coupling forces should be transmitted through a set of bent levers,
similar to the one shown in Fig (9-1}) , the pivots of which are fastened to a
third elastic body which freely interpenetrates the other two, has comparable
mass, and remains stiff throughout the entire measurement process. It is

ot hard to show that Eqs. (9.8.77) then také the modified.forms -

1 =1 , #I,I , gIL,I I S &
" _ t = - -
1 S 13 MILI?TI(E o i A e ¢ 3
1 SIT | =II,IT , gl,II IT I X
" - [ - = - -
e i - ¢ 15 MLy T (B + E + BTN - ks *LII® Y
(9.8.78)
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viacrs e cocuilicients Kr s Koy s KI,II are independent lincar functions

of the (essentially three) independent elastic constants involved in the con-
pensation and correlation devices (see¢ Yeh, 1960). Taking note of the uncer-

tuinty relations AﬂrﬁsI ~ 1, AﬂIIAsII ~ 1, and the fact that

AFLIT L 12 ML 21‘1AI Ll | ete. (9.8.79)

we see thot by choosing the elastic constants in such a way that

: \
A 4 5,1 \
1 *= IEg MIQLI L S

u 2 I1I,II
11 "EH MII 11 Trr A ’ ¢ (9-8.80)

o ALII , ,II,I
*1,11 T 288 MdeILIQLIIZTITII e AT,
.l

we may reduce the uncertainty relations following from Egs. (9.8.78) to the

forms
gl . 12 - , 1 I LII _ LI\ IT
- o oI | 2B MLy P AT - AT s (9-8-81)
1 Bt
RIL 12 1 1,11 _ ,II,I, I
;e ap_astl * EMILIZIIIA’ - AT AT, (9.8.82)
Myphrp Trf®

the product of which, upon minimization with respect to the product ASIASII,

reduces to (9.8.22).

The case in which the time intervals TI and TII overlap while the
spatial regions do not has been treated for the electromagnetic mecasurement
problem by Bohr ond Rosenfeld. Their method may be immediately applied also
to the grovitotional problem, but we refer the reader to their pcper for

details. Evidently there will be no mutual interference between the two
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measurements at all in this case unless the test bodies are separated by

distances of order T or lees. Since we have always assumed L > T , the
case of spatial overlap and the case in which the time intervals do not over-
lap are really sufficient to provide an adequate test of the quantum formalism.
In the latter case the introduction of a correlation mechanism 1s actually

I,1I IL,I (or both) wmnishes. Only the

unnecessary since either A or A
individual compensation mechanisms are then needed. It should, of course,
always be remembered that the explicit form (9.8.21) for the quantities

AL, II

, etc. is valid only in local regions. If the two test bodies are
situated at large distances from one another, they will continmue to provide a
valid test of the quantum formalism, but the Green's function D (x - x°)
appearing in the uncertainty relation will have to be replaced by the function

G of Eq. (9.6.55), which takes into account tke effect of the macro-

-uW'T'
scopic curvature of space-time on the propagetion of disturbaences in the
gravitational field.

We conclude this section with an outline of the measurability analysis
for the components Hab of the Riemann tensor. The test body which is
appropriate for measuring averages of these components comnsists of two
mutually interpenetrable cubes having identicel masses. Each is composed of
a uniform distribution of spinning particles, the spins of one being aligned
antiparallel to those of the other, so that each has & uniform mass density
p o and a uniform spin density, the latter being denoted by o-a for one and
-0, for the other.

The measurement process is based on the ponderomotive equation (9.7.35)

for spinning particles. Outside of the time interval T the two cubes are

bound firmly together and possess elastic moduli which render them stiff.
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During the interval T the elastic moduli drop to zero, the mutual binding
is released, and the cubes are allowed to drift apart. The mutual separation

Sza at any point satisfies the equation
PBZy = Fpha (9+8.83)

the factor 2 reflecting the fact that each cube possesses a spin argular
momentum. The measurement of an average of the compnent Hba nmay evidently
be achieved by orienting the spins in the positive and negative xb-directions
and making, through a symmetric exchange of radiation bundles between the two
cubes, measurements of the total relative momenta of the two cubes in the
xa-direction at the beginning and end of the interval T. More generally the
spins mey be oriented along &n arbitrary axis characterized by direction

cosines iﬁa « Writing

c. = OB, (9.8.84)

and teking note of the fact that the "reduced mass" characterizing the relative
momenta corresponds to & density %)DO , we then obtain, as a result of

measurements of the relative momenta in the xl-direction,

" 1 L . 1 oe 4 =
p," - pl' = EL/;O(Szl - BZI')d%§u= Ed[‘pobzl d'x = ZTﬁbel ’ (9-8-85)
\'i vT
= - -1 [ 4
By = L 3¢ fHab ax , ) (9.8.86)
vT
x = 130 . (9.8-87)

The weight factor for the field average is seen to be uniform in this case

instead of parabolic.
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We shall not give here a detailed description of the radiation bundles
used for the relative momentum measurements, nor shall we repeat the analys s
of the various sources of uncertainty which arise in the measurement process.

It is clear that the arguments are essentially the same for abﬁbl as they
were for E_zll » the main difference being that the photon distribution at the
moment of collision is now uniform instead of prcportional to 'xll e The

only source of uncertainty which, in the end, must be taken into account is
that due to the uncontrollable relative displacement Axl resulting from the
first relative momentum measuremént. This relative displacement is, of course,
held essentially constant throughout the time interval T tkrough the use of
a "counter impulse" as in the case of the measurement of E , and is related

to the uncertainty Apl in the relative momentum measurements by
1
AXApy 1. (9.8.88)
The uncertainty in the measurement of Bbﬁ:Bl is therefore

AB L) - s (9-8.89)

which, for every value of Axl no matter how small, can be made arbitrarily
small by the choice of a sufficiently large value of £ . The critical field
strength below which we enter the quantum domain is given by Eq. (9.8.23) as

before, and the condition
A B ) ~ AL, <1
bip1 ’ n » (9.8.90)
on the accuracy of the measurement, together with the necessary restriction

Axl << L, (9.8.91)
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yields the requirement

L ~ L >> L. (9.8.92)

= Tl

L
Axl

>+

In the present enalysis the total relative spin 22 behaves like a
charge, and because it is independent of the total mass 2M we have here an
adjustable charge-to-mass ratio £/M . The mass must be chosen large enough
so that the relative displacement of the two cubes caused by the field to be
meesured remeins small compared to L during the interval T. The condition

for this is
(/M) y, TE<<L . (9.8.93)

Remembering the weak field eomdition

B, T2 << 1 (9.8.94)

[cfe (9¢8+15)] we see that this will be satisfied if we choose

M2l s> (9+8.95)

[cf. (9+8.28)], which, together with the condition (9.8.13) leads once again
to the fundamental limitation (9-8-29) on the smallness of allowable measure-
ment domains. We note that the effect of the spins themselves on the gravita-
tional field may be ignored except during the interval T , since at other
times they cancel one another. We also note that conditions (9+8.92) and
(9.8.29) together imply that a very large number of elementary spins

1 L 3 , etc.) must be used in the construction of the test bodye.

27 2
The commutation relations which remain to be tested are
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(', 11 fdxfd ' aaI%IBcII%II'ﬁI(X)"ﬁH(X')

T T ST
x ecef(B aeb bd +8 B.d.b be a'b ed)sz (x'- x'), (9.8096)

(&, g1y = 11 fd xfd x'8 °"b a 1L, IIw I(x)w IIixr)
x(8 ac T'bd + 8TaJdSTbc: - 8Ta.'b cd)v D(x - x'), (9.8.97)

where the subscripts on the E ena # have been dropped and en arbitrary
quasi-Cartesian coordinate system has been introduced relative to which the
spins and xl-a.xes of the test bodies have direction cosines BaI s aan and
aaI » aan respectively. The mction wH(x) is the weight function appro-

priate to the measurement of i , having, in a coordinate system oriented with

the test body, the form

=31 1 1 1. 1y 241 1. _%2
Wo(x) = L7T77e(x +2L)9(2L x Jo(x® + 3 L)e(z L x<)

X 9(x3 + ']2; L)e(]—z' L - x3) e(xo)e(T - xo). (9.8.98)

By the same procedure as was used to obtain Eq. (9.8.20) we may re-express the

commutators (9.8.96) and (9.8.97) in the forms

EL, BTy = 1 (cPM - 0thh) (9-8.99)
B, 8% = 1 (pTeTT. BT (9.8.100)
where
I = at% [af%t w T x)07(x - x)p, Ty T8 My T
I
X{(8,.8pq * Baabe = BevleaVy 50000(*)
I I
8acwH ,0a00(%) = Bady chO(x) ¥, a00X) = Bpa¥H ,ac00(*)
I 1 I ' :
+ B Wy ,cdoo(x) + 8 Wy a.bOO(x) + Wy ,abcd(x)] R (9.8.101)
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CIfII = %fdhxfdhx' WHII(x') D (x' - x) aaiabIBcIIadllecef

x [(2 8,.8p3 - Bgplea’ EI,ooor(")

-28,, EI bdof(x) + 8, W abof(x)] " (9.8.102)
pILs I o ]ﬁfduxfdux' wEI(x) D(x - x') & IabIB 11, 11 € oor
x [(2 8,84 - BgpBeq) HH,OOOf("')
-2 W L e(xt) ¢ 8 Wy, arop(x")] - (9.8.103)

We consider first the commutetor (9.8.99), the testing of which requires
test bodies appropriate to the measurement of both types of components, E
end 0 s of the Riemann tensor, together with suiteble compensation and cor-
relation mechenisms. A compensation mechanism suitable for the measurement of
E has already been described. The compensation mechanism which may convenient -
ly be used in the test body which measures f consists of a set of mechanical
springs joining the two interpenetrating cubes of which the test body is com-
posed. The correlation mechanism may consist, as before, of a set of springs
in the region of spatial overlasp, connecting the two test bodies through pivot-
ing devices as shown in Fig. (9-"-). In this case it 1s important, however,
that the springs be affixed to only one of. the two interpenetrating cubes;
otherwise no correlation is achieved. Under an errsngement of this type the

dynemicel equations describing the measurement process take the forms

I, =I,I  =II,I 1 II
zr(ﬁ + B + E )-nIs -RI,IIx 5

. 1, FIL,II, gI,II 1 _ 1
Prr - Prr = Ipft BT+ E + i o S *r,11°  °

y R 12 MLy
(9.8.10k)
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The quantity H?X represents the comtribution which test body I
makes to the field average f over the space-time domain defined by test body
II . Its uncertainty mey be computed by inserting the stress-energy uncertainty
.8‘ L] L]
(9:8.65) into equation (9-7-29) (with H, and Tuv replaced by AH and
Muv respectively) and solving the latter with the ald of the retarded

Green's functicn D (x - x') . One finds

sI,II _ 1 I,II, I
N L Br et et (9.8.105)

In order to compute in a similar manner the uncertainty Aii:':II’I

in the con-
tribution which test body II makes to the field average E over the space-
time domain defined by test body I , we must first determine the form of the
stress-energy uncertainty of the test body II resulting from the measurement
of the relstive momentum pII' . This uncertainty receives contributions from
two sources: from the mass and from the spin of the test body. At first sight
it would appear that the mass contributes a dipole term to AT(O)(O) which is
proportional to AxII . It is to be remembered, however, that AxII is the
relative displacement of the two cubes composing the test body. The center
of mass of the test body as a whole remains at rest in the coordinate system

originally defined by the 'body.35 Therefore the mass contribution is that of

two equal and outwardly oriented dipoles at opposite ends of the test body.

Furthermore the strength of these dipoles is proportional to (AxII)2 and not
to AxII . The mass contribution may therefore be neglected in comparison to

the spin contribution which is of the first order in Ax'' . It is mot hard to

see that the latter contribution, in & coordinate system oriented with the

test body, is given by
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Aoyo) = © (9.8.106)

\ 1 1 1
Alyio) = - 3 CapBIBX B L - %) - 8(xt + 3 L)J6(x® + 3 Loz L - x°)
x6(3 + 2 1ok L - D) pe(:De(z - X%, (9.8.107)
ATep = J5.(5alebcc1 * ableacd)adc&l[e(xl + % L)G(% L - xh)

x o(x% + T L)e(z L - x2)o(x> + et - %)) [8(x%) - B(T - 22 iy
(9.8.108)

where the label "“II" has been temporarily omitted and where the implicit
assumption has been made that all elastic and binding forces are restored at
the end of the interval T so that the test body returns to its original state
(except for slight changes resulting from its intervening experiences which
may be neglected). Equation (9.8.107) is obtained immediately from Eq.(D.15)
Appendix D by carrying out a differentiation with respect to xl to represent
the effect of the displacement Axl. The components Amab given by Egq.
(9-8-108) are then inferred from the energy-momentum conservation laws. One

easily verfies that

(0) o oa _
A:I‘(O) s0* A‘T(.O) o = 0 (9.8.109)
(0) b
ATa, ,O + ATB. ,b = O . (9'8-110)

These relations also follow at once from the representation

AT = 0 N
(o)(o) -~ ’ )
1 1 ' °
ATaL(O) = b Erax eabcabwﬂ,lb ’ 4 (9.8.111)
! lyes=. il 1 \
ATy = ZEIX (B, 64 + By €acaBa"m 00 2 y;
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which, in an arbitrary quasi-Cartesian coordinate system, takes the form

&To)0) = © »
L o
OT,0) = B IO %Cpcmna 2 (9.8.112)
AT, - Z= a, (s + € W
ab = 3 ETAMB %3 (8aa%ec Bpa€aec’Mmr0e .

Inserting (9.8.112) into the retsrded solution of Eq.(9.7.27), we finally get

_ 11,1, II
= Z, T D AX . (9.8.113)

I I

Similarly, inserting (9.8.112) into the retarded solution of Eq. (9.7.28) and

making use of the identity

€pctder = Oadlbeler * Paelbrlcd * BazPraee
- aad&bface - 8a,f&‘neacd - 8.'::Let’bdacf ’ (9.8.114)
we find
=II,II _ 11,11, II
ONH = ZIITIIB AX . (9.8.115)

The uncertainty AE‘I’I is given by Eq.(9.8.68) as before.

If we now choose the various elastic constants in such a way that

2 L4 21I,I

1
*r = I My ipTr A ’
_ 2 II,IT
6;p = EppTpp B ’ (9.8.116)
1 . 1,11, II,I,
*I,IT T 3 Bl BT (C 7T+ D),
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then the uncertainty relstions following from Eqs. (9.8.104) take the forms

I,II _ pIL,I

BT . 22 slz oo c |t (9.8.117)
WL lrpel 2 ILII
p b s
. .
=11 LII _ I,

—_— 1 I, I
~ ITI +p ML c as” o, (9.8.118)
ZIITIIAX' 2% Il II I

the product of which, upon minimization with respect to the product AsIAxII »

reduces to

AFIARIT %CI,II } DII,II , (9.8.119)

in accord with the commutation relation (9.8.99).

The testing of the commutation relation (9.8.100) is egain entirely
analogous to the sbove. Two pairs of spin-endowed cubes are needed in this
case. The compensation and correlation mechanisms agein consist of mechanical
springs. The springs for the correlation mechanism Join a cube from one of the
two test bodies to a cube from the other through the usual pivot devices. The

dyasmical equations describing the measurement procees axre

Wo_o ot o =1 , sI,I , gILI, _ _ I _ II
Py P; Z‘.ITI(H + o+ B ) * X k1, 11% R
11 II.II 1,11 11 : (9-8-120)
no_ T = 7 ? ftotry - -
Prr - P11 T (B + B +EPT) - X 1, 11%
The various uncertainties are given by
A 11 ZITIBI’I;AxI , etc. (9.8.121)

Therefore, by choosing the elastic constants in such a way that




21,1
K = ZIafI B,’ ’
"1 ~ e B, (9.8.122)

I,II , gIL1I,

1
ko = 3 irrrtrran(® ’

we obtain the uncertainty relations

A~ — 2w Is o bl Bt (9.8.123)
sl B
i

N I SN ,IB.I"H - BII’I’A:{I : (9.8.124)
PP R - L
8 i

the product of which, upon minimization with respect to the product AxIAxII »

reduces to
Nl I R e L I (9.8.125)

The measurement theoretical verification of the formalism of the guentum theory
of geometry to lowest order of perturbatidn theory (weak-field approximation)

is thus complete.
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{9.9) Conclusions and outlook.

The conclusions which may be drawn from the investigations of this chapter
are the following:

(1) The Uncertainty Principle and the theory of measurementc lead to a
well defined framework within which to develop a manifestly covariant formalism
for the quantum theory of gravitation. The elements which enter naturally into
this formalism are the Green's functions describing the propagation of small
disturbances. The quantitative results of the formdlism ere completely unam-
biguous at the level of the weak-field approximation. Ambiguities connected
with the choice of factor sequences can arise, if at all, only in higher orders
of perturbation expansions based on the wesk-field approximation as a starting
point. It should be emphasized once again that the weak-field approximation is
an sssumption only about the magnitude of the Riemana tensor in any finite domain
of interest. It is not an assumption about asymptotic conditions or about the
global structure of space-time.

(2) Averages of the gravitational field (i.e., Riemann tensor) over space-
time domains having dimensions large compared to 10-32 cm. can be measured with
a degree of accuracy well within the domain of quantum phenomena provided that
test bodies of sufficient refinement but violating no fundemental principles
are used. Examination of the mutual interference of such measurements verifies
in detail the statistical predictions of the quantum formalism.

(3) The gravitational field, like all other fields, therefore must be
quantized, or else the logical structure of quantum field theory must be pro-
foundly altered, or both. The possiblity is left open that the quantum theory

of geometry may itself contribute deeply to the future development of quantum

field theory.
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(4) The dimension 10'32 em. constitutes a fundamental limit on the small-

ness of allowable measurement domains. Below this limit it is impossible to
interpret the results of measurements in terms of properties or states character-
izing the individuel systems under observation. Although this conclusion was
reached within the framework of an investigation based on the weak-field approxi-
metion it is obviously of general velidity. The very uncertainty in the energy
of the devices (e.g., photons) needed to meke an observation in such a small
region,will in virtue of the uncontrollable gravitational disturbance which it
produces, completely destroy the statistical significance of the results of the
observation. This is true for the measurement of esny field, not only the
gravitational field. The concept of "field strength" therefore has, below ’
10'32 cm., no objective meaning in terms of observations performed at the
classicel level. That is to say, 10-32 cme constitutes an absolute limit on
the domain of applicability of classicel concepts, even as modified by the l
Principle of Complementarity.

These conclusions give rise immediately to the following questions: Why
does experiment appear to show that a practicel limit on the domain of appli-

cability of classical concepts already exists at or near 10':L3

cm. ? Can
gravitation, in virtue of this fact, reelly have any connection with elementary
particle physice?

Certainly, doubts must arise when one notes that if test bodies suitable
for detecting the quantum properties of the gravitationel field are to be con-
structed out of normel metter, condition (9.8.28) implies that they will will
be visible to the naked eye! Even if one could imagine them to be constructed

out of nuclear matter their dimensions would have to be at least of the order

of a micron. Conversely it is only to b uies of such size that gravitational
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effects themselves can properly be ascribed. For, if an attempt were made to
measure the gravitational field (i.e., Riemann tensor) of such a body, the
measurement, like all field measurements, would have to be performed over some
finite domein of dimension L , so that even if the mass m of the body were
concentrated practically in a point the strongest field which could be measured
would be of order m L'3 . But the quentum fluctustions themselves are of order
L3 [cf. Eq. (9.8.23)). Hence, it makes no sense at all to talk about the
gravitational field of an individual elementary particle (m~ lO'g) in dimension-
less units). The static field exceeds the quantum fluctuations in magnitude

only for bodies mcre massive than 3.07 X lO°6

gram ( the unit of mass in the
dimensionless system). From this point of view the gravitational field is
plainly a statistical phenomenon of bulk matter, elthough its fluctuations are
governed by quantum laws.

Any attempt to bridge the gap between 10732 cm. and 10733 cm. by means of
gravitation alone seems practicelly hopeless. At the very least such an attempt
would have to invoke exceedingly complicated processes. Misner and Wheeler
(1957) have made a preliminary study of the dynemics and properties of "worm-
holes" and have suggested that such objects may provide an avenue for connecting
gravitation with elementary particles. In view of the fact that a "wormhole" is
strictly a classical entity, however, the suggestion must be viewed with a
measure of skepticism. It is far from clear that "wormhole" concepts would
provide useful mental imsges in the ultra-microscopic domain except in a purely
topological sense. The possible dynamical existence of "wormholes" depends
crucially on the nonlinearities of Einstein's equations, but the effect of these
ponlinearities must be described in c-number terms. The situation is similar to
that which exists in the relation of the theory of exact classicad solutions of
Einstein'!s equations to the quantum theory. The case which is sonmetimes made
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for discovering and studying the properties of such solutions---particularly
the properties of wave solutions---because of their supposed significance for
the quantization program, is lergely spurious. The study of nonlinearities at
the clessical level in which large numbers of coherent quanta are involved has
little relevance for the description of graviton-graviton interactions. The
same is true of other field theories. In electrodynamics, for example, a

study of the solutions of the dynamical equations of a charged classical boson
field interacting with a classical Maxwell field will never lead to the concept
of vacuum polerization, no matter how exhaustively pursued. This does not meen,
of course, that classical nonlinear problems are unimportant. Indeed, they
arise in the course of fundamentel investigations on the behavior of large
disturbances. Quantum mechanics, however, is a theory of smell disturbances,
and the nonlineer problems which arise within its framework are usually abstract
and without classical models.

Only in the domein below 10'32 cm. is quantum mechanics itself transformed
into a theory of large disturtances and violent fluctuations. "Theory," of
course, is hardly the proper word to use here since it does not yet exist.
Quantum mechenics is certain to be very different from what we know it in this
mysterious region. But this brings us back again to the problem of the great
gap between 10713 cm. and 10732 ¢m. It is necessary to admit that something
"happens" at 10'13 cm. which has every sppearance of being fundamentel and not
merely a statistical manifestation of basic phenomena occurring at a much deeper
level. Complexities asre present, to be sure, but they do not compare with the
complexities of atomic phenomena; and the gap between 10'8 cm. and 10']'3 cm,
is negligible compared to that between 10713 cn. and 10732 cm.  Since the theory

of gravitaetion has nothing special to say at 10'13 cm. it is necessary to look
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elsevhere for the description of Nature at this level. However, the geometrical

viewpoint of general relativity need not be abandoned. In fact, it has newver
been completely abandoned, as is evidenced from the many attempts to bring order
into the description of elementary particle phenomena by introducing "internal®
spaces and invarience groups. On the other hand, it has not, since Einstein,
been pursued with the single mirdedness and integrity which it perhaps deserves.
It mey, for example, be vorth while to meke strong attempts to link the apparent
"internel" spaces more directly to the ordinary four-dimensional space-time of
everydsy experience, even at the risk of resurrecting some long abandoned so-
called "unified field theories" in modified or genmeralized form. The present
unattractiveness of theories of this type is due at least in part to the lack

of a quantum formalism for them. If the quantization program for gravitation

can be successfully pushed through then these theories may become more attractive.

lhcm. or lO-lsc:n.) as a practical

The existence of 10°13 cm. (or even 10~
1imit on the smallness of measurement domains does not mean that the terminology
of field theory ("field strengths,""quanta," "fluctuations," etc.) should be
abandoned below this level. Although the concepts embodied in the terminoclogy
become, in this domain, purely abstract rather than experimental, no question
of "hidden variables" is involved. The continued use of continuous parameters
(i.e., coordinates) to describe dynamicel systems at this level is an unavoldable
requirement of the theory of group representations. The fact that the invari-
ance groups of physics are continuous is established already at the classiceal
level. Except in the case of Abelian groups, continucus groups cannot be
successively approximated by finite groups. There is no 1n-between.36 Even
at 10'32cm. the continuum description must persist if the general coordinate

transformation group is really fundamental. Here, however, the use of a
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phenomenological "cut-off", reflecting the absolute meaninglessness Of concepts

like "field strength" at this level, may be valid. Deser (1957) has given
heuristic arguments for this possibility, based on the Feynman quantization
method.37 Such a "cut-off" would, of course, eliminate the ultra-violet di-
vergences of field theory and establish a fundamental role for gravitation in
elementary particle physics. Mcreover, the existence of a "cut-off" at this
wavelength is not obviously imcompatible with the success of modern field
theory}%orrelating experimental data.

A brief look should be taken at the possible form which the quantum theory
of geometry may essume in its eventual development. Although i1t has been shown
that the requirement of asymptotic flatness at infinity 1is not essential to the
quentization program it will nevertheless often be a convenient assumption in

ractice. When asymptotic flatness holds, the linearized theory should provide
an excellent framework within which to describe conditions in the remote past
and future, when the fields assoclated with the small number of real queanta
invclved in any given quantum problem are dispersed to a state of infinite weak-
ness. The Rlemann tensor is then effectively a true invariant, and its positive
and negative frequency components should be directly useble for the annihilation
and creation of initial and final gravitons. The actual interactions between
these gravitons as well as the interactions between gravitons and other quanta
will then be described in terms of Green's functions. Instead of retarded and
advanced Green's fuactions the Feynman propagator will be appropriate for this
description. (It differs from the former only in the nature of its boundary
conditions; it satisfies the same basic equations [Eqs. (9.3.7a,b)]).) The
development, however, should not e kept within the confines of the flat space-
time approach. For, an examination of the inevitable infinitlies of the theory

from the Lorentz invariant standpoint leads to a very pessimistic view of the
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renormalization picture. In opposition to this view it must be constently

borne in mind that the "bad" divergences of quantum gravidynamics are of an
essentially different kind from those of other field theoxries. They are direct
consequences of the fact that the light cone itself gets shifted by the non-
linearities of the theory. But the light-cone shift is precisely what gives
the theory its unique interest, and a special effort should be made to separate
the divergences which it generstes from other divergences. The latter may well
be amenable to standard treastment, if they remain at all.

As for the light-cone-shift it is impossible to foresee what technigues
will be necessary in order to recognize it unambiguously and to deal with it.
As & pure guess one might imagine that the badly divergent leading terms of =
perturbation expansion will prove to be summable to & convergent expression
characterizing a “cut-off" frequency which leads to a breakdown of causality
in the strict Lorentz-covariant sense and represents the effect of the fluc-
tustions in the light cone from which it originated. It must be confessed,
however, that the problem remsins shrouded in darkness and thet the end of the

chepter leaves us only &t the beginning of the subject.

Chapel Hill, North Carolina

November 1960

17h




Appendices to Part II




(9.3) Derivation of results used in Section 6.

The computation of the equations for small disturbances starts with

the verification of the following variations:

1 1
5(-22)2 - - (-32)2 v°‘\r‘3s0t‘3 , (B.1)
v = vavﬁvysﬁy-rvBSza’B :,L (B.2)
v, = - s, = - (-32) 2 % s, (B.3)
8 5%:_})&& % s?éf_&ys#,a , (B %)
i vy
B = -n (vavﬂsoe + 8 ), (B.5)
o = - p(VaVasas + 5z°‘,a) + nedJ (B.6)
sr, 7 = 2 €788, ., * BB, - 88,,.0) (B.7)
SRQW_T = S'PavT-p - sr‘wT.v . (B.8)

Thése expressions are obtained by straightforward extension of the methods
begun at the end of Section 5, taking into account the fact that the metric
itself, as well as the z's 1is now subject to variation. Making use of
these expressions together with the definition (9.5.76) and the dynamical
equations, and taking note of the admonitions expressed in Egs. (9.6.5),

(9.6.6) and (9.6.7), one finds, by direct computation,
5t = - tPsz? 4 tsP  + P78
L4 27 7

+ 2 (vav7t68 + 2 vﬁv'y‘ca8 - v'7v8‘cO’8 - cO[B'75)s75 5 (B.9)

11 - 1




sV = - ("V8%) _ + ™%82%, + ¢¥Ys2t
T e

g

+ip + W)Wy + 2 YWV + 2 vWItHT |

- T LIV L M) 5 0 VYR, { Be10) .k
S f‘-B T TGB°5527:7 ! 1‘67(280&07 " Spyea) : -,
+ {{(p + Vrr)vo[v‘av'rv5 + 2 -.ro[v7t;[38 + 2 vﬁv7ta5 »
- v0y6t78 - v7v8tQP - c0?78]s78 +n voyan}.B, (B.11) =
By = %sc-r'(sg“wc‘r * B8oruny = BBugeyr = BBugeps) (B.12) |
1
st = %gE (gucrgv‘r - %é‘vgm’)gpx(aso-r-px + Sgp)..o_T - Sgap.,rx - Sgﬂ‘.cp) ;
1
- % gE(gpchT + 7R gpa VI g VORT g“agVTR |
- % g "% R)sg,. - (B.23)

Use of these expressions in the variation of the dynamical equations (9.6.9), 1

(9+6+10), (9+6.11), (9.6.12) leads at once to Eqs: (9.6.18) through (9.6.21)

of the text. )
The proof that the Green's functions of Eq. (906.29) are consistent

with the supplementary conditions (9.6.24), (9:6.25) involves the derivation

of some identities satisfied by the wave cperators F__, , etc. D3y a straight-

oJ
forward calculation which makes use of the readily verified identity

(tQBv7) = tP L P E (v O 7P8 | Py7:OB _ 0875)v (B.14)
. .y oy 705 4
one finde
V":‘Fw' = ‘(n.F@J' (bols)
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From this it follows that
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It may therefore be inferred thac
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vav‘B(Gic@, - +
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(B.27)

(B.18)

(B.19)

(B.20)

(B-21)
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the B * being the Green's functions for the operator (B.19). Hence, finally,

)
vo‘vssth3 = efdt' /‘d:?&', vavﬁ[(G2 . ct? G 057"5"3)

oAfs0!
1 + 7! 7!
*2 Coper » Yop opy's’ ) oB5e
Ay e
t ’rl\lju 83735!
€ [d‘c' [d%&"@-t[w'(BA/S@“) + v7’(5A/az7')] (B.23)

which vanishes in virtue of the invariance condition (9.6,16) , thus confirming
the condition (9.6.26). .
In order to verify the supplementary condition (9.5.27) one makes use of

the additional identities

o , (B.2%)

1
Qg J2 +FmJl.B

1 B + P (B.25)

2 ® pet e'-p

n
o
-

na[I( L7P0 1 &P 75)576 'C'-B]-ne

- séRan%(sms‘58 = g"sgﬁ’)“y;'é'_sl » (B.26)

T ope’?
_12_gaBFel; + F

B B

which can be obtained by a straightforward calculation making use of the
Einstein equations (9.6.12), the commutation laws for coveriant differentiation,
and the algebraic identities satisfied by the Riemann tensor. Using these

relations, together with the easily verified identity
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we get

1o 1,0 o
= (0,387 , -3 (8 1.5 * B grn))
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x (G "t ? G en,gny » G engnygag),an az", (B.28)
where Fa'fl" is the wave operator for the Greenfs :Ii‘t.n:u'.'tion.'s.@‘iolBﬁ of
1 1
(04
Fa,qn = 828578 T]".'ﬁ')’ - Saﬁaﬁsanls ° (B°29)
From this it follows that
oy B 1 oB_yBy.* .
ol 58 8 )6 go.g o (B.30)
ay pd 1 : s !
&7 - 3 ) 6 g =T, (B.31)

(ga7gﬁs - % Sossya)Gt,’aesgn.ﬁ = ‘ngtaehgt 'Ggﬂcc.es’ (B.32)

whence, making use of an integration by parts, we have
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which vanishes in virtue of the invariance condition ©.6.17 ).

The evaluation of the Green’s functions Gﬂ makes use of the

+

@" G aagl
property of self-adjointness possessed by the lower right hand corner of the
wave-operator matrix in Eq. (9,6',29) s & property which may be verified by
explicitly computing the integral

y . -/ :
/ 7'0* 7'o! [yt

FaG"‘ . Fa ) F7|a F a \ ||' |||dj+z.‘

J
e LB7°0! p OB pr'dlop 5 }
M : 7R ! T* Bt /
. A A
" §
for arbitrary X’ and Xy,a. s @and showing that it vanishes. As a result
of this self-adjointness the corresponding corner of the Green?s-function

matrix satisfies the reciprocity relation (see Section 3)

a0yt 40 Fyla + a
G RN G TS !
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vhich permits Eqs. (B.21) and (B.22) to be rewritten in the forms

VW(Z.,Z) 2 (BOBS)

0. (B.36)
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7! 8t 4 + L
ViV (Gogytesr * 30 03795')
The Creen's functions (B.34) are precisely those which solve the equation
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IG Jn®g d'z )(B’37)
F "
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( { FOCG" Fa 2y a’ " \
v J (’

d'z
"en +
FQB o FQB € § G " ;“E’!

which is derived from EQ. (9,6,29).' Therefore, making use of the explicit

forms (9+6.32), (9.6.35) and (9-6.47) for the wave operators Ty , FOBJ-

and the Green's functions G:"':'r , and carrying out an integration by parts,
2]

one finds
e : / 1" /
Gm s \ Gia? Gﬂ ngu Founraes \\
] N . )+ vé { 7 J +-
= fd z"Jd PARLS ; G rrigs
Gi_ Gi 711 Gi ( F7"8" C]
cgo? e opy"s" \ J"'/ .
0 N
¢ y'"ed" + e Gia Han
" on 7" 5" E 7’8 + 4oy
= ngpv v G J"@: d 'z
+ 1l .+
G 'Oa,rn.an '2' G Oﬁ‘)’“ﬁ"
! o5 \
. _ VO'(?*(Z",Z) }
= f d""fd3u'."w" } s(u",ut). (B. 38)
: - VA o) l/ POV S

Now, the equation which the Green's functions f‘i satisfy may be written,

in terms of the proper time, in the form

- Al + W) EFYdT = - (T - Ta(y,u') (8.39)
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[see Eq. (B.19)]), which has the solutioa

®Ez,2) = F (o, + W)™ a(R(T - T)B(¥,ut)- (B. 40)

Therefore Eq. (B.38) becomes
Ee [ o
e - vVuG
ct 0
ape'

where the G> eare the functions defined in Eq.(9.6.52) of the text.

(B. 1)
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(9.C) The stressless medium in a fixed metric.

For a stressless medium we have w, =0, hp =0, vvf_v =0,
'1’“l Ve pv’1 v’ . We retain the fremework of clocks in order to have an intrinsic
proper time in terms of which to define covariant Poisson brackets. However,
we assume the passage to the intrinsic proper time has elready been made, and
we ignore the clock variables. Only the Green's functions Gw' > ¢ remain,

satisfying the equations

, (c.1)

= pv’va(ciaa',yb = ﬁayebeieﬂ') - -8’
- (pvavﬁGt;B)_a = - b(z, z”); (C.2)
The solutions of Eq. (C.2) are
GHe, e = % o e((r - T)(T - 7RG, W), (c-3)
yielding
O(z,2') = - oy TH(T - T By, W) - (c.#)

In order to solve Eg. (C.l) we introduce the two-point function o(z, z°)
which equals one half the square of the distance slong the geodesic between 2

and z'. Its defining equations are

1 o _
3%.49% = 95
(c.5)
lim c & O lim o = 0 lim ) = .
z¥ 2 ’ z2' 2 ca 4 28 52 0B saB 4
from which we obtain
’ Y
0..;70'- ) = G'B = 0 , G"aya.7 = G-a =0 , (C°6)
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a_y rya a
e +c -G =2 0 (C.7)
- ’ . B - B - B H 4
A 7 7 - = - C.
o‘saﬁ 'c. + o-oayo-- a ? o‘-w 1 0 ( 8)
It is convenient also to introduce the twoepoint function
_ 1im _ '
DOB‘ = = acwﬁ H zt 5 2 DOﬁ’ = gOﬁ F] (C°9)

- ’
and its Iinverse D 108 » which exists at least whem 2z and z! are suffici-

ently close together:

“1py' _ o B SRt B
Da7.D = 8, Dya.D = 8, - (C.10)

We note that indices induced by coveriant differentiation commute when they

refer to different points. From Eq. (c.&) we therefore infer

-D

s ! o, (c.11)

4 7
0'. D 7-7 + o‘-a Dyﬁ'

vhich, togesther with the law of differentiation of inverse matrices, yields

- ¢ =161 = ' '
o Tpio8 - a.°‘7D B pi® - o . (c.12)

Since the particle world-lines of the stressless medium are gecdeslcs we

hare have
o, 8(&, }vzv') = vy (T - T')B(Nxt, }i") s G.Bgs(wuv,f\:) == Ve (T-T)S(x,&') ,
(C.13)
and since
(o] (o] - 3
G“ﬁ' = O.'QB'O.' =2 - Doa'O'- » G.a = - Dlw G"B‘ » (Call&)

it follows that
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ple’y Pl ul) = vaa(k uf) . (C15)

We now assert that the solutions of Eqg. (C.l) are
t wl et - t
e ¥0, o(F (T - ™))(7 - T')S%, ’tv)::)D lopt | (C.16)
To prove this we first compute

VG o 3 To(a(r - 1))8(u, ut) (078 4 o 7R )
y 0 (u, u? . ,

= % po"le(?*('r - T'))8(y, ,‘;1;)0.(1713'173' ’ (c.17)

in which Egs. (C.12) and (C.1l3) ere used. Then, making use consecutively of
Egs. (C.12),(C.5), (C.9),(C.7) and the commutation law for covariert differen-

tiation, ve get
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v7v5GiaB = p 15(2_. z')cr_ayD 18
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3 1 SOB
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3oyt e(F(r - T))B(a, wt)(r - T%) Y7 o o D o8
liad

- ¢ 0 2
= g 1.08° | 7 OrY ¥

7€d (C..18)

’
from wahich Eg. (C.1) follows. We therefore have

'« - Hr - tiegy, gD (c.19)

and from Eq. (9.6.53) of the text we obtain the Poisson bracket
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(zOt, zﬁ') = Gw' + v '

- po'l('r - T')E’(Ai’ B;,‘)Pm' R (c.0)

PQ‘3 '

which may he compared with Eq_.,(9¢1+.,50) for the single relativistic particle in
flat space-~time,

From Eq. (C.15) it follows that
¢ ) ¢
v e, ) = o, PP Vaid(g, ut) = 0 . (C.22)

This relation, together with Egq. (995.80) s engbles us to show the consistency

I
|
|
plBT Bt (c.21) 1
1
1
I
|

of the Poisson bracket (C.20) with the restriction vava = =1 , We have

1
( (vg™?, ) P)

7, Q
-vav(z,z .y

- v7[va(za, zB’)]_7 = 0 . (C.23)

~lop*®
The fact that it is the function D which eppears in the Poisson bracket

(C.20) mey be understood in terms of the disturbance in the momentum of a con-

stituent particle, and hence in the direction of its world line, which results
. ] . .
from a measurement of its position. For D 1o may be recognized as the |
) 1
matrix representing the tramnsformation from the variables za, zB which speci-

fy the geodesic between 2z and z' by means of its end points, to the varizbles

s
zB ’ O'.B' which specify it by means of one of its end points and the taagent

vector at that point. If the tangent vector O'_B, is varied, the resulting
varigtion in za is *

_]cqa!
Sza = =D 8o

gt - (C.2k)

¥ —1op T
The matrix D evidently becomes singular on the céustic surfaces where
the geodesics emonating from a given pcint begin to crosse.
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(9.D) The spinning particle in a gravitetional field.

We consider first the Thomas precession. For this purpose it is convenient
to introduce the three unit vectors nia of Section 5 [see Eqs.(9-5-64)] along
the world line of the particle. The condition thet the local Cartesien frame

)

defined by these vectors propagete in as perallel a fashion as possible 1is

n, n = 0 (De1)

i o ’

the dot denoting the covarient proper time derivetive. Teking the coverient

proper time derivative of the first of Egs. (9-5-64) we also have

iia Ea-i-nia'ﬁa = 0 , (D.2)

which, together with (D.1), implies

o Mo c-a
i 10 z . (D-3)
The spin engular momentum tensor 15 first defined in the local Cartesian system.

Denoting it by Z‘.i .j(= -z 3 i) in this system, Wwe may express its components in

en arbitrary system in the form
. - a B
o8 n, nJ 21,1 ’ (D.})

which automatically satisfies Eqs. (9-7-.34%). The Thomas precession is obtained
by requiring_ that the spin angular momentum tensor be constent in the local

Cartesien system. That is,

£y = 0 . (D.5)

Combining this with Eq. (D.3) we obtain Eq. (9-7-36) of the text.

The defirition of stress-energy density which leads to the pondercmotive

equation (9.7-35)88 well as to the law of Thomas precession is
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= f [(m2%ZP - i"‘;‘!’y;")e.""m3 - i“z.wa“"w_?] ar, (D.6)

vhere m is the particle rest mass and "V B is the delta function defined

by Eq. (9+6-39) with 2z' replaced by x . Making use of the identity

Su v

oy = -9‘2-(5”" + 8% ) (D.T)

8 @
es well as the laws for interchanging the order of coveriant differentiation,

we may write the energy-momentum comservation lawin the form

0 = 1‘“'.
= f[- —(mz P - “z? 27) (8 a;ﬁ “g'_q) +% 25P7 (8 ;_B + s“B'_a)_y-J ar
- f [(- ma® + ¥ 27088 - 35 - R L » 3 PR
+ -]21):576(8“ o7+ 3 T PR 7Efa“e] ar
2 f (@ - 'fl"‘ﬁ'z‘3 - >':°‘B‘z'-‘3 . -Jé- R""Byaiﬁzﬁ)a‘*a
-%; (2P 4+ (5‘32"‘7 - a“zﬁy‘)m(a“a.s - s“B_a))dT (D;B)

The coefficients of the delta function Sua and of the curl Sua. g " 5“'6_ -

must vanish separately in the integrand, and hence we have

nz = 'zﬂﬁ i:a 3P 4 % K 5782‘3278 : (D-9)
o= . (zﬁz:a 'ai57)27 . (D;lo)

The coveriant proper time derivative of the second of Egs. (9.7-34) allows us
immediately to rewrite Eq.(D.10) in the form (9.7.36) of the text. Furthermore,
multiplying the latter equation by 'z'B and making use of the identity io:z' ¢ .o

as well as of the antisymmetry of zaﬁ » we infer
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i‘."‘a”z’ﬂ -0 , (D.11)

whence Eg. (D.9) reduces to Eq. (9+7.35) of the text.

The strees-erergy density for an ensemble of spinning perticles labeled
by paremeters u® pay be obtained from (D.6) by multiplying by the particle
number density n, in the Lagranglien system and integrating over the u? :
PV = f ar f Bu o [P - P 27)eHv - 2P '

1 o [ /2% g opey?

= pvp'vv - % (Vpo‘vc + VVUPO_;T)VO‘VT + J—é (vpo'W + vvopc);c , (D-12)

T

where p 1s the proper rest mess density and 01"l V 45 the spin density:

p (D.13)

m
B

o“vznifw, Y% =0 . (D.1k)

Equation (D-12)  may be used to verify the identification of ZO@ with the epin
angular momentum tensor of & constituent particle. In the case of uniform
motion in a flat space-time the momentum density of the ensemble in a Cartesian

rest frame is eniirely due to the spin end is given by

(0) 1 '
T, = %m0 - (p.15)

According to the conventional definition we then have, for the total angular

momentum,
tot  _ (0) 43, . %
Z. ‘ape | % T S = 3 oo ] oeara TE
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7.

Footnotes
See, for example, the introduction to the chapter by Arnowitt, Deser and
Misner in this volume. '
The suthor hopes Einsteints ghost will forgive him for this remark.
Attempts to ®evaluate" the integral when the dynamical equations are satis-
fied generally lead to the trivialities S =ew or S =0 .
As is well known from the theory of continuous groups, most of the properties
of the group in the large are determined already by the infinitesimal trans-
formetions (neighborhood of the unit element). Only the global topology of
the group requires separate investigatlion, butwe do not concern ourselves
with this here.
It is assumed, of course, that the invariance group alone gives rise to the
totality of all conditions (9.2.5). That no further conditions can be ob-
tained by taking variational derivatives is assured by the identity (9. 2.3).

Here we use the word "state" in the classical sense.

i.e., the action integral restricted to this time interval. For this com-
parison it is necessary to choose one of. the many otherwise equivalent inte-
grands which does not trivially vanish when the dynamical equations of the
apparatus are satisfied.

An integration by parts is not permitted, for example, in the integral

f dux" dux' G‘ik"Fk.. J,qu’ unless @'j' vanishes sufficiently rapidly in
the remote past. The integral, in fact, may diverge if the latter criterion

is not met. This is merely one aspect of the circumstance that Egs.

(9-3.7 a,b) are of purely formel vealidity and must be handled with reason-

able care.
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10.

12

13.
1h.

It may be conjectured that this group is, in fact, the group of all mappings

of the set of all physically distinct solutions of the dynamical equations
into itself. Just as each physically distinct solution is characterized by

the values which it gives to all invariants, so should the set of ell invar-

diants be able to generate mll physically distinct solutions differing infini-

tesimally f{rom a given one. While the truth of this conjecture can hardly be
doubted, the author has not succeeded in proving it for the general case.

The group inveriance of the Poisson bracket may likewise be checked by direct
computation and use of appropriate identities.

In nonrelativistic theories it will, of course, be necessary to restrict the
formalism to the subgroup of transformations under which space and time
coordinates transform independencly.

e.8., if a displacement Bxu exists satisfying Killing®s equation:

o) + B

Xow 0 , or, when the trace of the stress-energy density
' . 1 o
vanishes, the'more general equation: Bxp.vv + BXV-H- =3 guvax g °

X
Bev

t 1is assumed, however;, to increase monotonically with proper time.

It should not be supposed that the eesentially phenomenological description
of the c]'.ock fails to lead to a well defined quantum theory --- quite the
contrary. Introducing eigenvectors |p'> of the momenta p“ = m:“cu » and
noting that the latter are constrafned by the conditicn p2 = - me s one

sees that the simplest covariant normalization-completeness conditdon smwhich

can be written for the former is

fdp(m')fdup’ lp°>8(p'2+m'2)<P'l = 1 :

. pl0>o
where p(m') is a monotonically increasing function cheracterizing the mass

spectrum of the clock. Noting, further, that Egs. (9- 4,50) and (9-4.53) imply
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15.

16.

B, p ] = ¥, k] = 1-#x, + ) = 1 &

a .
3—1“-<x'('r')| = 1(x'(1")|m »
where the |x'('r")> are eigenvectors of the & {T), one may conveniently

take
-é L2V | |
(e = () SHET+ T

(p'xt = p’ux’u), and hence

xi('r')lx"(-ru)> = 1-;/‘A(+)(x’ - x,.;m,)eim'(‘r’ - ™) dp(m*) ,

where A(+)(x' - x";m') 4is the positive energy component of the familiar
propagation function for a relativistic particle of mass nt.
Young'!s modulus, the bulk modulus and Poisson's ratio mre given respectively

by

A(A+ p).

oI+

Y = 2u(l +o0) = 3k(1 - 20), k=)..+§p., o =

(See, for example, Americen Iastitute of Physics Handbook, MeGraw-Hill, New

York, 1957, p. 2 - 10.)
The positive and negative frequency components are uniquely defined by the

equations
+) ) ) + )? +) )
Sxa = 8xa( + 8xa( - ’ Bxa( - = Sxa( 5 8;{8.( = - 13~ﬁxa( * »

where ®© is a positive definite Hermitian differential operator. If the

vector Sxa(+)|0> does not vanish, then because 85{a(+) = - i[Bxa(+), H],
; ey () - (+) > (+)
which implies HSxa |O> = (EO - A%\)Sxa |02 it follows that ox,, |O>
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18.

19.

must represent a state in which the oversge energy is lower than that of the
ground state. But this. ig a contrediction since it may be readily shown
thet the Hamiltonien (9.5-23), with internal energy given by (9.5.39), is .
positive definite as long as the bulk and shear moduli are positive

(A> =~ % gy < 0) and therefore possesses & spectrum bounded from below.

This identity is readily verified by considering the minors of the matrix
formed by the four vectors nip' ,ly}_L and observing that the determinent of

the matrix itself is equal to g 2 . Here it is assumed that the vectors

¥ pave the same relative orientation as displeacements in

H L
i » By y By, B3

o 1 2.3
the x°, x, x°~ x~ directions respectively and that the permutation symbols
are taken with the sign conventions €3 =1, € 0123 = l .

The symbol sguv‘c - is effectively unambiguous. It means, of course,

(ng‘ ) rather than s(sp.v c'r) since the latter would be trivial. Gener-
ally spea.king, when parentheses are omited, as in 8x ™ 5z Ot B ? SI‘W e 9

etc., the covaeriant derivative is to be understood as performed on the vari-
ation, rather than vice versa. The seme holds for ordinary derivatives,

as in Bza

»p" S
It is not hard to show that Eq. (9.6..2].) may be rewritten in the form
1

2, po vt 1 uv 0Ty ph, t * £ +
CCal --égug LG o1‘-p>\.+sp>wc'r-scrpv'rx"sﬂ.-cp)
1
2 T
v 2@+ TRV - 2R - 2 + %R - 3 Vg7 R)s

oT

+— [(p +w)vuvva+ o Vv VT . 2vvvctp'T
- P TT o OV L cp.vo"T]StcT + —lé notv Vs

= - e&A/agw .
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22.

2k,

The delta functions appearing in the definitions of these wave operators axe
to be taken as densities of weight zero at the point 2 and unit weight at
the point z*!. The wave operators themselves are therefore double-densities,
bhaving unit weight at both' z and z'. The delta functions appearing in
the final matrix in Eq. (9,6,29) , on the other hand, have unit weight

at 2z and weight =zero at 32t .

One of the drawbacks of the coordinate system provided by the clock frame-
work is that under sustained compressional motion hypersurfaces of constant
T will not remain space-like but will begin to cross the light cone after

a period of time of .the order of the reciprocael of the velocity gradient,
but before infinite compression is reached. This is not a practical diffi-
culty, however, when the elastic medium is used in the ground state, subject
only to small oscillations. Oscillations themselves, even when violent,texd
to wash out the effect.

It is well that such terms in fact appear. It will be noted that the stress-
energy dengity occurs in Eq. (9.7.3) with the cpposite sigx from what it has
in Eqs. (9.3-61), (9.3.62), in analogy with the negative sign on the proper-
time’-displacement generator m of Eg. (9.4.52). If the first term of Eg.
(9.)7.3) were to stand alone, energy would then have to te defined as a neg-
ative definite gquantity. Furthermore, the first term refers only to the
proper energy of the elastic medium and cannot describe Yenergy of the
gravitational field, " even assuming the concept to be meanipgful in the
g=neral case.

The structure of propegation functions in the presence of a general metric
hes been described by Hademerd (1923) and by DeWitt and Brehme (1960).

The group in th:.Ls case is Abelian and analogous to the gauge group of

electrodynamics.
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26.

27.

28.

The introduction of the notion of uniform motion right at the stert is, of
course, antithetical to Mach's Principle. Any epproximation scheme, however,
is almost bound to be anti-Machian, since Mach's Principle is very closely
associated with requirements of self-consistency, which‘ can be tested only
after approximate results have themselves been obtailred.

Equetion (9.7.18) has the fully coveriant analog

N .

32(30)‘Rp.v01'-px * % Rp.pvacr'r + % Rvpf\.tpo*r * % RapRuvp'r & % R'rpRu.vcrp

- PA P A p A
Rp.vpxR or = 2 Rp.p(n.Rv + te Rup'erv o )

1 . , . .
& =EL (UO]J.-TV E U'rvoop = Um-av - Uo‘v-'rp. + Up.o‘-vr M Uw.p(r = Up'r-w - .p.'r)’

= 1
Up.v N Tp.v - ESMVT ’
which may be used, among other things, to prove that gravitational wave froats,
represented by discontinuities in the Riemann tensor, propagate along null

surfaces (relative to the metric shead of the front) end have polarization

vectors vhich propagate in a parallel fashion elong the null gecdesics.

For Example: o 14 /o) 0 /1\ 0 1
/ L

o - ] O 1 OT-—-‘l'—-"l 0

\-“3 o/f,00 /,i1), g 1/, 1/

It 1s assumed that no resonances have built up.

We here employ a coordinate system which is extended beyond the initial
instant in such a way that 81 remaipns equal to unity. The role of di-
rectly defining the coordinate system is thus temporarily withheld from the
test body ond is only restored to it at the end of the measurement period,

when the body regains its previous elestic properties. This, however, does

18



30.

5.

52.

pot mean that the coordinate system thereby becomes any the less “intrinsic,"
since it is still uniquely determined by a set of 4nitial conditions. Actu-
elly, the use of such & system is forced upon us by the fact that the coordi-
petes defined by the test body are rendered temporarily unfit for service by
the disturb?.nces which the test body suffers during the measurement rrocess
(see velow). On the other hand ve note that since the weak-field situation
is essumed, the commutators of the Riemann temsor in this system are not
sensibly different from what they would be in a system defined at all times
by an undisturbed body.

If they did exist it would be possib."Le to avoid the limitation (9.8. 2G) on
the smallress of measurement domains. On the other hand, difficulties with
the stability of the vacuum would then be encountered.

Here there is no question of f£ield-theoretical divergences. If one were to
calculate explicitly the contribution of the gravitational field to the
quantum fluctuations in the invarisnt straln tensor, for example, the phe-
nomencioglical cut-off (9.,5.56) would have to be used for this contribution
just as for the contribution coming from the elastic wave field. This is
becsuse the metric at any point in the elastic medium has no meaning other
than as an average oOver a region of volume 13 . The problems of divergence
and renormalization must be considered only vhen the materiel particles in-
volved are described sb initio in fundamentsl field theoretical terms.

These remarks slso hold in the electromagnetic case considered by Bohr and
Rosenfeld.

The state of the body before and after the field measurement is practically
unstrained. A field which is weak enough for quantum effects to be important

produces an average stra:in in a stiff elestic medium of order

Rcr:l‘l’. L

18k

2 . 1™ << or less. The strain 05945 in contrast, may be much large
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3k

55

36’

5T

11 _ .2
Its ratio with AT 1is ¢ £88,,48;,/p,08)) << (A + 2 p)fog =" <1

The cnergy density stored in the compensation mechanism may be neglected in
comparison with AT . To prove this we first note that the sound velocity

corresponding to the modulus (9.8.71) is of order

) 2 ' 2
_ 1111\) f1m
° 2% T €€ b

J Po /

The proof then follows by the inequality of footnote 33«

Here again we employ a coordinate system which is detached from the test body
during the measurement intervel T but which is uniquely specified by initial
conditions. (Cf. footnote 29)

For a purely group theoreticel approach to the quantization of geometry the
reader is referred to the papers of Klein (1955) end Leurent (1959)-

Only the most rudimentery development of the Feynman techniques has so far
been achieved in general relativity. For a discussion of the problems in-
volved in this difficult subject see the papers by Misner (1957) and

Leaurent (1959).
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